Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Soc Trans ; 51(5): 1881-1895, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37801286

RESUMEN

Peroxidasin is a heme-containing peroxidase enzyme that plays a vital role in the cross-linking of collagen IV molecules in basement membranes. Collagen IV cross-links are essential for providing structure and mechanical stability throughout tissue development, homeostasis, and wound healing. During cancer progression, the basement membrane is degraded, and proteins typically found in the basement membrane, including peroxidasin and collagen IV, can be found spread throughout the tumour microenvironment where they interact with cancer cells and alter cell behaviour. Whilst peroxidasin is reported to be up-regulated in a number of different cancers, the role that it plays in disease progression and metastasis has only recently begun to be studied. This review highlights the current literature exploring the known roles of peroxidasin in normal tissues and cancer progression, regulators of peroxidasin expression, and the reported relationships between peroxidasin expression and patient outcome in cancer.


Asunto(s)
Neoplasias , Peroxidasa , Humanos , Peroxidasa/química , Peroxidasa/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Membrana Basal/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Peroxidasina
2.
Adv Sci (Weinh) ; 11(23): e2307963, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602451

RESUMEN

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.


Asunto(s)
Ácidos Grasos , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Femenino , Ácidos Grasos/metabolismo , Ratones , Línea Celular Tumoral , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Metástasis de la Neoplasia
3.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640930

RESUMEN

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Asunto(s)
Enfermedades Pancreáticas , Neoplasias Pancreáticas , Humanos , Gemcitabina , Proteína-Lisina 6-Oxidasa , Neoplasias Pancreáticas/tratamiento farmacológico
4.
Nat Commun ; 13(1): 4587, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933466

RESUMEN

The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse.


Asunto(s)
Neoplasias de la Mama , Colágeno Tipo XII/metabolismo , Metástasis de la Neoplasia , Microambiente Tumoral , Neoplasias de la Mama/patología , Colágeno , Colágeno Tipo I , Matriz Extracelular/patología , Femenino , Humanos , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/patología , Proteómica
5.
Cancers (Basel) ; 13(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513979

RESUMEN

The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, the Lox family has emerged as a potentially powerful clinical target. This review examines how lysyl oxidase family dysregulation in solid cancers contributes to disease progression and poor patient outcomes, as well as an evaluation of the preclinical landscape of LOX family targeting therapeutics. We also discuss the suitability of the LOX family as a diagnostic and/or prognostic marker in solid tumours.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA