Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 142(1): 101-11, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603017

RESUMEN

Regulation of the phd/doc toxin-antitoxin operon involves the toxin Doc as co- or derepressor depending on the ratio between Phd and Doc, a phenomenon known as conditional cooperativity. The mechanism underlying this observed behavior is not understood. Here we show that monomeric Doc engages two Phd dimers on two unrelated binding sites. The binding of Doc to the intrinsically disordered C-terminal domain of Phd structures its N-terminal DNA-binding domain, illustrating allosteric coupling between highly disordered and highly unstable domains. This allosteric effect also couples Doc neutralization to the conditional regulation of transcription. In this way, higher levels of Doc tighten repression up to a point where the accumulation of toxin triggers the production of Phd to counteract its action. Our experiments provide the basis for understanding the mechanism of conditional cooperative regulation of transcription typical of toxin-antitoxin modules. This model may be applicable for the regulation of other biological systems.


Asunto(s)
Regulación Alostérica , Regulación de la Expresión Génica , Transcripción Genética , Proteínas Virales/metabolismo , Sitio Alostérico , Bacteriófago P1/metabolismo , ADN/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Regiones Operadoras Genéticas , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Proteínas Virales/química , Difracción de Rayos X
2.
Mol Cell ; 35(2): 154-63, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647513

RESUMEN

Toxin-antitoxin modules are small regulatory circuits that ensure survival of bacterial populations under challenging environmental conditions. The ccd toxin-antitoxin module on the F plasmid codes for the toxin CcdB and its antitoxin CcdA. CcdB poisons gyrase while CcdA actively dissociates CcdB:gyrase complexes in a process called rejuvenation. The CcdA:CcdB ratio modulates autorepression of the ccd operon. The mechanisms behind both rejuvenation and regulation of expression are poorly understood. We show that CcdA binds consecutively to two partially overlapping sites on CcdB, which differ in affinity by six orders of magnitude. The first, picomolar affinity interaction triggers a conformational change in CcdB that initiates the dissociation of CcdB:gyrase complexes by an allosteric segmental binding mechanism. The second, micromolar affinity binding event regulates expression of the ccd operon. Both functions of CcdA, rejuvenation and autoregulation, are mechanistically intertwined and depend crucially on the intrinsically disordered nature of the CcdA C-terminal domain.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Modelos Moleculares , Operón , Estructura Terciaria de Proteína
3.
Proc Natl Acad Sci U S A ; 108(4): 1314-9, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220305

RESUMEN

Atomic-level structural investigation of the key conformational intermediates of amyloidogenesis remains a challenge. Here we demonstrate the utility of nanobodies to trap and characterize intermediates of ß2-microglobulin (ß2m) amyloidogenesis by X-ray crystallography. For this purpose, we selected five single domain antibodies that block the fibrillogenesis of a proteolytic amyloidogenic fragment of ß2m (ΔN6ß2m). The crystal structure of ΔN6ß2m in complex with one of these nanobodies (Nb24) identifies domain swapping as a plausible mechanism of self-association of this amyloidogenic protein. In the swapped dimer, two extended hinge loops--corresponding to the heptapetide NHVTLSQ that forms amyloid in isolation--are unmasked and fold into a new two-stranded antiparallel ß-sheet. The ß-strands of this sheet are prone to self-associate and stack perpendicular to the direction of the strands to build large intermolecular ß-sheets that run parallel to the axis of growing oligomers, providing an elongation mechanism by self-templated growth.


Asunto(s)
Amiloide/química , Anticuerpos/inmunología , Multimerización de Proteína , Microglobulina beta-2/química , Secuencia de Aminoácidos , Amiloide/inmunología , Amiloide/ultraestructura , Animales , Afinidad de Anticuerpos/inmunología , Camélidos del Nuevo Mundo/inmunología , Camelus/inmunología , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Humanos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie , Microglobulina beta-2/genética , Microglobulina beta-2/inmunología
4.
Nat Struct Mol Biol ; 13(4): 374-5, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16518399

RESUMEN

Secretion via the type II secretion pathway in Gram-negative bacteria often relies crucially on steric chaperones in the periplasm. Here, we report the crystal structure of the soluble form of a lipase-specific foldase (Lif) from Burkholderia glumae in complex with its cognate lipase. The structure reveals how Lif uses a novel alpha-helical scaffold to embrace lipase, thereby creating an unusually extensive folding platform.


Asunto(s)
Proteínas Bacterianas/química , Lipasa/química , Proteínas Bacterianas/metabolismo , Burkholderia/enzimología , Lipasa/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Especificidad por Sustrato
5.
PLoS Comput Biol ; 5(8): e1000461, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19675666

RESUMEN

The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29(Trx)-Cys89(ArsC) intermediate disulfide is formed by the nucleophilic attack of Cys29(Trx) on the exposed Cys82(ArsC)-Cys89(ArsC) in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32(Trx) in contact with Cys29(Trx). Cys32(Trx) is activated for its nucleophilic attack by hydrogen bonds, and Cys32(Trx) is found to be more reactive than Cys82(ArsC). Additionally, Cys32(Trx) directs its nucleophilic attack on the more susceptible Cys29(Trx) and not on Cys89(ArsC). This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx.


Asunto(s)
Arseniato Reductasas/química , Disulfuros/química , Tiorredoxinas/química , Arseniato Reductasas/metabolismo , Simulación por Computador , Cisteína/química , Cisteína/metabolismo , Disulfuros/metabolismo , Cinética , Modelos Lineales , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Tiorredoxinas/metabolismo
6.
Curr Opin Struct Biol ; 17(5): 506-12, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17719218

RESUMEN

The few known crystal structures of receptor-binding domains of fimbrial tip adhesins, FimH, PapGII, and F17G, tell us that each of these structures is unique and surprising. Despite little to no sequence identity, common to them all is their variable immunoglobulin (Ig)-fold. Nevertheless, their glycan-binding sites have evolved in different locations onto this similar scaffold, and with distinct, highly specific binding properties. Difficult to capture is the often dominant role played by the fimbrial shaft in host cell recognition and biofilm formation. The major pilin FaeG, building up the shaft of F4 fimbriae, also harbors the carbohydrate receptor-binding property and has thereto an enlarged Ig-domain, with the insertion of two beta-strands and two alpha-helices. Bordetella and CFA/I fimbriae combine a tip adhesin with major subunit adhesins. Still other fimbriae incorporate a specialized invasin at the very tip of polyadhesive fibers for uptake of bacteria in cells of the immune system and host epithelia. Finally, glycan recognition by fimbrial adhesins has often been found to coincide with the binding of cell-surface integrins and components of the extracellular matrix, such as collagen IV and laminin.


Asunto(s)
Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Adhesinas Bacterianas/química , Adhesinas Bacterianas/fisiología , Animales , Adhesión Bacteriana/fisiología , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Colágeno/metabolismo , Proteínas Fimbrias/fisiología , Fimbrias Bacterianas/fisiología , Humanos , Integrinas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Virulencia
7.
Nature ; 424(6950): 783-8, 2003 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-12917687

RESUMEN

Amyloid diseases are characterized by an aberrant assembly of a specific protein or protein fragment into fibrils and plaques that are deposited in various organs and tissues, often with serious pathological consequences. Non-neuropathic systemic amyloidosis is associated with single point mutations in the gene coding for human lysozyme. Here we report that a single-domain fragment of a camelid antibody raised against wild-type human lysozyme inhibits the in vitro aggregation of its amyloidogenic variant, D67H. Our structural studies reveal that the epitope includes neither the site of mutation nor most residues in the region of the protein structure that is destabilized by the mutation. Instead, the binding of the antibody fragment achieves its effect by restoring the structural cooperativity characteristic of the wild-type protein. This appears to occur at least in part through the transmission of long-range conformational effects to the interface between the two structural domains of the protein. Thus, reducing the ability of an amyloidogenic protein to form partly unfolded species can be an effective method of preventing its aggregation, suggesting approaches to the rational design of therapeutic agents directed against protein deposition diseases.


Asunto(s)
Amiloidosis/inmunología , Camélidos del Nuevo Mundo/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Muramidasa/química , Muramidasa/inmunología , Animales , Dicroismo Circular , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Muramidasa/genética , Mutación/genética , Desnaturalización Proteica , Estructura Terciaria de Proteína , Difracción de Rayos X
8.
Trends Biochem Sci ; 30(12): 672-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16257530

RESUMEN

Bacterial genomes frequently contain operons that encode a toxin and its antidote. These 'toxin-antitoxin (TA) modules' have an important role in bacterial stress physiology and might form the basis of multidrug resistance. The toxins in TA modules act as gyrase poisons or stall the ribosome by mediating the cleavage of mRNA. The antidotes contain an N-terminal DNA-binding region of variable fold and a C-terminal toxin-inhibiting domain. When bound to toxin, the C-terminal domain adopts an extended conformation. In the absence of toxin, by contrast, this domain (and sometimes the whole antidote protein) remains unstructured, allowing its fast degradation by proteolysis. Under silent conditions the antidote inhibits the toxin and the toxin-antidote complex acts as a repressor for the TA operon, whereas under conditions of activation proteolytic degradation of the antidote outpaces its synthesis.


Asunto(s)
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Antitoxinas/química , Antitoxinas/genética , Bacterias/genética , Bacterias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Girasa de ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Evolución Molecular , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos , Pliegue de Proteína , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo
9.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 5): 411-20, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19390146

RESUMEN

Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Chaperonas Moleculares/química , Adhesinas de Escherichia coli/química , Rastreo Diferencial de Calorimetría , Reactivos de Enlaces Cruzados/farmacología , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Glutaral/farmacología , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/aislamiento & purificación , Chaperonas Moleculares/metabolismo , Nefelometría y Turbidimetría , Conformación Proteica , Desnaturalización Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
10.
Biochemistry ; 47(42): 11041-54, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18816062

RESUMEN

A single-domain fragment, cAb-HuL22, of a camelid heavy-chain antibody specific for the active site of human lysozyme has been generated, and its effects on the properties of the I56T and D67H amyloidogenic variants of human lysozyme, which are associated with a form of systemic amyloidosis, have been investigated by a wide range of biophysical techniques. Pulse-labeling hydrogen-deuterium exchange experiments monitored by mass spectrometry reveal that binding of the antibody fragment strongly inhibits the locally cooperative unfolding of the I56T and D67H variants and restores their global cooperativity to that characteristic of the wild-type protein. The antibody fragment was, however, not stable enough under the conditions used to explore its ability to perturb the aggregation behavior of the lysozyme amyloidogenic variants. We therefore engineered a more stable version of cAb-HuL22 by adding a disulfide bridge between the two beta-sheets in the hydrophobic core of the protein. The binding of this engineered antibody fragment to the amyloidogenic variants of lysozyme inhibited their aggregation into fibrils. These findings support the premise that the reduction in global cooperativity caused by the pathogenic mutations in the lysozyme gene is the determining feature underlying their amyloidogenicity. These observations indicate further that molecular targeting of enzyme active sites, and of protein binding sites in general, is an effective strategy for inhibiting or preventing the aberrant self-assembly process that is often a consequence of protein mutation and the origin of pathogenicity. Moreover, this work further demonstrates the unique properties of camelid single-domain antibody fragments as structural probes for studying the mechanism of aggregation and as potential inhibitors of fibril formation.


Asunto(s)
Amiloide/antagonistas & inhibidores , Camelus/inmunología , Fragmentos de Inmunoglobulinas/metabolismo , Muramidasa/inmunología , Secuencia de Aminoácidos , Amiloide/química , Amiloide/inmunología , Amiloide/metabolismo , Animales , Afinidad de Anticuerpos , Camelus/genética , Dominio Catalítico/inmunología , Humanos , Fragmentos de Inmunoglobulinas/genética , Técnicas In Vitro , Datos de Secuencia Molecular , Muramidasa/antagonistas & inhibidores , Muramidasa/química , Muramidasa/metabolismo , Resonancia Magnética Nuclear Biomolecular , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
11.
J Mol Biol ; 368(3): 791-9, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17368480

RESUMEN

F4 fimbriae encoded by the fae operon are the major colonization factors associated with porcine neonatal and postweaning diarrhoea caused by enterotoxigenic Escherichia coli (ETEC). Via the chaperone/usher pathway, the F4 fimbriae are assembled as long polymers of the major subunit FaeG, which also possesses the adhesive properties of the fimbriae. Intrinsically, the incomplete fold of fimbrial subunits renders them unstable and susceptible to aggregation and/or proteolytic degradation in the absence of a specific periplasmic chaperone. In order to test the possibility of producing FaeG in plants, FaeG expression was studied in transgenic tobacco plants. FaeG was directed to different subcellular compartments by specific targeting signals. Targeting of FaeG to the chloroplast results in much higher yields than FaeG targeting to the endoplasmic reticulum or the apoplast. Two chloroplast-targeted FaeG variants were purified from tobacco plants and crystallized. The crystal structures show that chloroplasts circumvent the absence of the fimbrial assembly machinery by assembling FaeG into strand-swapped dimers. Furthermore, the structures reveal how FaeG combines the structural requirements of a major fimbrial subunit with its adhesive role by grafting an additional domain on its Ig-like core.


Asunto(s)
Adhesinas de Escherichia coli/química , Cloroplastos/metabolismo , Proteínas Fimbrias/química , Modelos Moleculares , Nicotiana/metabolismo , Adhesinas de Escherichia coli/biosíntesis , Adhesinas de Escherichia coli/genética , Dimerización , Retículo Endoplásmico/metabolismo , Proteínas Fimbrias/biosíntesis , Proteínas Fimbrias/genética , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Nicotiana/genética
12.
J Mol Biol ; 368(3): 800-11, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17368484

RESUMEN

Nature uses thioredoxin-like folds in several disulfide bond oxidoreductases. Each of them has a typical active site Cys-X-X-Cys sequence motif, the hallmark of thioredoxin being Trp-Cys-Gly-Pro-Cys. The intriguing role of the highly conserved proline in the ubiquitous reducing agent thioredoxin was studied by site-specific mutagenesis of Staphylococcus aureus thioredoxin (Sa_Trx). We present X-ray structures, redox potential, pK(a), steady-state kinetic parameters, and thermodynamic stabilities. By replacing the central proline to a threonine/serine, no extra hydrogen bonds with the sulphur of the nucleophilic cysteine are introduced. The only structural difference is that the immediate chemical surrounding of the nucleophilic cysteine becomes more hydrophilic. The pK(a) value of the nucleophilic cysteine decreases with approximately one pH unit and its redox potential increases with 30 mV. Thioredoxin becomes more oxidizing and the efficiency to catalyse substrate reduction (k(cat)/K(M)) decreases sevenfold relative to wild-type Sa_Trx. The oxidized form of wild-type Sa_Trx is far more stable than the reduced form over the whole temperature range. The driving force to reduce substrate proteins is the relative stability of the oxidized versus the reduced form Delta(T(1/2))(ox/red). This driving force is decreased in the Sa_Trx P31T mutant. Delta(T(1/2))(ox/red) drops from 15.5 degrees C (wild-type) to 5.8 degrees C (P31T mutant). In conclusion, the active site proline in thioredoxin determines the driving potential for substrate reduction.


Asunto(s)
Modelos Moleculares , Staphylococcus aureus/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Cisteína/química , Enlace de Hidrógeno , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Prolina/química , Pliegue de Proteína , Termodinámica , Tiorredoxinas/genética
13.
J Biotechnol ; 135(3): 247-54, 2008 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-18538880

RESUMEN

The invariant surface glycoprotein ISG75 is a transmembrane glycoprotein occurring on the surface of the bloodstream-form Trypanozoon. This study describes the expression and purification of the N-terminal extracellular domain of ISG75, a novel target for development of diagnostic tests for trypanosomosis. To facilitate disulfide formation in the cytoplasm, a 1287-bp cDNA fragment encoding ISG75 from Trypanosoma brucei gambiense was expressed in a thioredoxin reductase, glutathione oxidoreductase double mutant Escherichia coli strain. An accessory plasmid pRIL, providing the argI, ileY, and leuW tRNAs, was necessary for efficient heterologous translation of the ISG75 mRNA. The recombinant double-tagged (streptavidine and histidine) ISG75 was purified by two-step affinity chromatography. Addition of L-glutamic acid and L-arginine in the buffer solutions was crucial to stabilise the protein during purification. The purified soluble protein was characterised by circular dichroism spectroscopy, reverse-phase high pressure liquid chromatography and mass spectrometry. It has an alpha-helical folded conformation, is homogeneous and pure (99%). Furthermore, sera of Trypanosoma brucei-infected animals specifically recognise this recombinant ISG75; and rabbit antiserum raised against the recombinant ISG75 detects all species of the Trypanozoon subgenus in parasite preparations.


Asunto(s)
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía de Afinidad , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Cabras , Espectrometría de Masas , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/aislamiento & purificación , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Estructura Terciaria de Proteína , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/aislamiento & purificación
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 11): 1034-8, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18997335

RESUMEN

The phd/doc addiction system is responsible for the stable inheritance of lysogenic bacteriophage P1 in its plasmidic form in Escherichia coli and is the archetype of a family of bacterial toxin-antitoxin modules. The His66Tyr mutant of Doc (Doc(H66Y)) was crystallized in space group P2(1), with unit-cell parameters a = 53.1, b = 198.0, c = 54.1 A, beta = 93.0 degrees . These crystals diffracted to 2.5 A resolution and probably contained four dimers of Doc in the asymmetric unit. Doc(H66Y) in complex with a 22-amino-acid C-terminal peptide of Phd (Phd(52-73Se)) was crystallized in space group C2, with unit-cell parameters a = 111.1, b = 38.6, c = 63.3 A, beta = 99.3 degrees , and diffracted to 1.9 A resolution. Crystals of the complete wild-type Phd-Doc complex belonged to space group P3(1)21 or P3(2)21, had an elongated unit cell with dimensions a = b = 48.9, c = 354.9 A and diffracted to 2.4 A resolution using synchrotron radiation.


Asunto(s)
Antitoxinas/química , Complejos Multiproteicos/química , Toxinas Biológicas/química , Proteínas Virales/química , Cristalización , Datos de Secuencia Molecular , Difracción de Rayos X
15.
J Mol Biol ; 361(1): 153-67, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16824540

RESUMEN

The interplay between metal binding, carbohydrate binding activity, stability and structure of the lectin from Pterocarpus angolensis was investigated. Removal of the metals leads to a more flexible form of the protein with significantly less conformational stability. Crystal structures of this metal-free form show significant structural rearrangements, although some structural features that allow the binding of sugars are retained. We propose that substitution of an asparagine residue at the start of the C-terminal beta-strand of the legume lectin monomer hinders the trans-isomerization of the cis-peptide bond upon demetallization and constitutes an intramolecular switch governing the isomer state of the non-proline bond and ultimately the lectin phenotype.


Asunto(s)
Metales/metabolismo , Lectinas de Plantas/química , Pterocarpus/química , Termodinámica , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Isomerismo , Metales/química , Datos de Secuencia Molecular , Lectinas de Plantas/metabolismo , Unión Proteica , Pterocarpus/metabolismo , Pterocarpus/ultraestructura
16.
J Mol Biol ; 360(4): 826-38, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16797027

RESUMEN

In the thioredoxin (Trx)-coupled arsenate reductase family, arsenate reductase from Staphylococcus aureus plasmid pI258 (Sa_ArsC) and from Bacillus subtilis (Bs_ArsC) are structurally related detoxification enzymes. Catalysis of the reduction of arsenate to arsenite involves a P-loop (Cys10Thr11Gly12Asn13Ser14Cys15Arg16) structural motif and a disulphide cascade between three conserved cysteine residues (Cys10, Cys82 and Cys89). For its activity, Sa_ArsC benefits from the binding of tetrahedral oxyanions in the P-loop active site and from the binding of potassium in a specific cation-binding site. In contrast, the steady-state kinetic parameters of Bs_ArsC are not affected by sulphate or potassium. The commonly occurring mutation of a histidine (H62), located about 6 A from the potassium-binding site in Sa_ArsC, to a glutamine uncouples the kinetic dependency on potassium. In addition, the binding affinity for potassium is affected by the presence of a lysine (K33) or an aspartic acid (D33) in combination with two negative charges (D30 and E31) on the surface of Trx-coupled arsenate reductases. In the P-loop of the Trx-coupled arsenate reductase family, the peptide bond between Gly12 and Asn13 can adopt two distinct conformations. The unique geometry of the P-loop with Asn13 in beta conformation, which is not observed in structurally related LMW PTPases, is stabilized by tetrahedral oxyanions and decreases the pK(a) value of Cys10 and Cys82. Tetrahedral oxyanions stabilize the P-loop in its catalytically most active form, which might explain the observed increase in k(cat) value for Sa_ArsC. Therefore, a subtle interplay of potassium and sulphate dictates the kinetics of Trx-coupled arsenate reductases.


Asunto(s)
Bacillus subtilis/enzimología , Bombas Iónicas/metabolismo , Complejos Multienzimáticos/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Staphylococcus aureus/enzimología , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , ATPasas Transportadoras de Arsenitos , Sitios de Unión , Catálisis , Bombas Iónicas/química , Cinética , Lisina/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación Proteica , Alineación de Secuencia , Agua/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-17401216

RESUMEN

The ccd toxin-antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB(Vfi)) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2(1)3, with unit-cell parameter a = 84.5 A, and diffracts to 1.5 A resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 A, beta = 110.0 degrees, and diffracts to 1.7 A resolution. The complex of CcdB(Vfi) with the GyrA14(Vfi) fragment of V. fischeri gyrase crystallizes in space group P2(1)2(1)2(1), with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 A, and diffracts to 2.2 A resolution. The corresponding mixed complex with E. coli GyrA14(Ec) crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 A, beta = 102.6 degrees, and diffracts to 1.95 A. Finally, a complex between CcdB(Vfi) and part of the F-plasmid antitoxin CcdA(F) crystallizes in space group P2(1)2(1)2(1), with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 A, and diffracts to 1.9 A resolution.


Asunto(s)
Aliivibrio fischeri/química , Proteínas Bacterianas/aislamiento & purificación , Girasa de ADN/química , Aliivibrio fischeri/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia de Bases , Cristalización , Cartilla de ADN , Datos de Secuencia Molecular , Conformación Proteica
18.
FEBS J ; 273(11): 2407-20, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16704415

RESUMEN

The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A.


Asunto(s)
Oligosacáridos/química , Lectinas de Plantas/química , Pterocarpus , Sitios de Unión , Conformación de Carbohidratos , Disacáridos/química , Proteínas Fúngicas/química , Modelos Moleculares , Datos de Secuencia Molecular , Trisacáridos/química
19.
J Mol Biol ; 350(1): 112-25, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15913651

RESUMEN

Heavy chain only antibodies of camelids bind their antigens with a single domain, the VHH, which acquired adaptations relative to classical VHs to function in the absence of a VL partner. Additional CDR loop conformations, outside the canonical loop structures of VHs, broaden the repertoire of the antigen-binding site. The combined effects of part of the CDR3 that folds over the "former" VL binding site and framework-2 mutations to more hydrophilic amino acids, enhance the solubility of VHH domains and prevent VL pairing. cAbAn33, a VHH domain specific for the carbohydrate moiety of the variant surface glycoprotein of trypanosomes, has a short CDR3 loop that does not cover the former VL binding site as well as a VH-specific Trp47 instead of the VHH-specific Gly47. Resurfacing its framework-2 region (mutations Tyr37Val, Glu44Gly and Arg45Leu) to mimic that of a human VH restores the VL binding capacity. In solution, the humanised VHH behaves as a soluble, monomeric entity, albeit with reduced thermodynamic stability and affinity for its antigen. Comparison of the crystal structures of cAbAn33 and its humanised derivative reveals steric hindrance exerted by VHH-specific residues Tyr37 and Arg45 that prevent the VL domain pairing, whereas Glu44 and Arg45 are key elements to avoid insolubility of the domain.


Asunto(s)
Antígenos/química , Antígenos/inmunología , Camelus/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Secuencia de Aminoácidos , Animales , Cromatografía en Gel , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Solubilidad
20.
J Mol Biol ; 348(5): 1091-102, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15854646

RESUMEN

Gyrase is an ubiquitous bacterial enzyme that is responsible for disentangling DNA during DNA replication and transcription. It is the target of the toxin CcdB, a paradigm for plasmid addiction systems and related bacterial toxin-antitoxin systems. The crystal structure of CcdB and the dimerization domain of the A subunit of gyrase (GyrA14) dictates an open conformation for the catalytic domain of gyrase when CcdB is bound. The action of CcdB is one of a wedge that stabilizes a dead-end covalent gyrase:DNA adduct. Although CcdB and GyrA14 form a globally symmetric complex where the two 2-fold axes of both dimers align, the complex is asymmetric in its details. At the centre of the interaction site, the Trp99 pair of CcdB stacks with the Arg462 pair of GyrA14, explaining why the Arg462Cys mutation in the A subunit of gyrase confers resistance to CcdB. Overexpression of GyrA14 protects Escherichia coli cells against CcdB, mimicking the action of the antidote CcdA.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Girasa de ADN/química , Inhibidores de Topoisomerasa II , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Cristalografía , Girasa de ADN/genética , Dimerización , Escherichia coli/genética , Escherichia coli/fisiología , Factor F/genética , Factor F/fisiología , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA