Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Crit Rev Microbiol ; 47(3): 275-289, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33513315

RESUMEN

The global scenario of antimicrobial resistance is alarming, and the development of new drugs has not appeared to make substantial progress. The constraints on drug discovery are due to difficulties in finding new targets for therapy, the high cost of development, and the mismatch between the time of drug introduction in a clinic and microorganism adaptation to a drug. Policies to address neglected diseases miss the broad spectrum of mycosis. Society is not aware of the actual threat represented by fungi to human health, food security, and biodiversity. The evidence discussed here is critical for warning governments to establish effective surveillance policies for fungi.HIGHLIGHTSFungal diseases are ignored even among neglected disease classifications.There are few options to treat mycoses, which is an increasing concern regarding fungal resistance to drugs, as evidenced by the spread of Candida auris.Fungal diseases represent a real threat to human health and food security.Investment in research to investigate the potential of repurposing drugs already in use could obtain results in the short term.


Asunto(s)
Antifúngicos/uso terapéutico , Hongos/efectos de los fármacos , Micosis/veterinaria , Animales , Farmacorresistencia Fúngica , Hongos/genética , Hongos/fisiología , Humanos , Micosis/microbiología
2.
Nitric Oxide ; 86: 1-11, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30772503

RESUMEN

Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that cause paracoccidioidomycosis (PCM), the major systemic mycosis in Latin America. The capacity to evade the innate immune response of the host is due to P. brasiliensis ability to respond and to survive the nitrosative stress caused by phagocytic cells. However, the regulation of signal transduction pathways associated to nitrosative stress response are poorly understood. Ras GTPase play an important role in the various cellular events in many fungi. Ras, in its activated form (Ras-GTP), interacts with effector proteins and can initiate a kinase cascade. In this report, we investigated the role of Ras GTPase in P. brasiliensis after in vitro stimulus with nitric oxide (NO). We observed that low concentrations of NO induced cell proliferation in P. brasiliensis, while high concentrations promoted decrease in fungal viability, and both events were reversed in the presence of a NO scavenger. We observed that high levels of NO induced Ras activation and its S-nitrosylation. Additionally, we showed that Ras modulated the expression of antioxidant genes in response to nitrosative stress. We find that the Hog1 MAP kinase contributed to nitrosative stress response in P. brasiliensis in a Ras-dependent manner. Taken together, our data demonstrate the relationship between Ras-GTPase and Hog1 MAPK pathway allowing for the P. brasiliensis adaptation to nitrosative stress.


Asunto(s)
Proteínas Fúngicas/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Estrés Nitrosativo/fisiología , Paracoccidioides/fisiología , Proteínas ras/fisiología , Secuencia de Aminoácidos , Animales , Muerte Celular/fisiología , Proliferación Celular/fisiología , Expresión Génica/fisiología , Masculino , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/química , Óxido Nítrico/farmacología , Procesamiento Proteico-Postraduccional
3.
Parasite Immunol ; 41(9): e12661, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31267529

RESUMEN

Evaluating the histopathological and morphometric changes caused by Leishmania (Leishmania) infantum chagasi infection either in the presence or absence of B-1 cells. Wild-type Balb/c and XID mice were used. Half of XID mice received B-1 cells adoptive transfer (XID + B1). Five animals from each group were infected (Balb/c I, XID I and XID + B1 I), totalizing six groups (n = 5). After 45 days of infection, the ileum was collected for histological processing and analysis. After infection, the XID animals showed an increase in the thickness of the intestinal layers, in the depth and width of the crypt and in the villi width. However, the Balb/c I group showed a reduction in almost all these parameters, whereas the villi width was increased. The villi height decreased in the infected XID animals; however, it was increased in the XID + B1 I group. Leishmania (L) infantum chagasiinfection caused a decrease in the number of Paneth cells; however, their area was increased. Finally, goblet cells and enterocytes presented different change profiles among groups. This study showed that the parasite infection causes structural and histopathological alterations in the intestine. These changes might be influenced by the absence of B-1 cells.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Leishmania infantum/fisiología , Leishmaniasis Visceral/patología , Traslado Adoptivo , Animales , Subgrupos de Linfocitos B/patología , Femenino , Inmunidad Innata , Intestinos/citología , Intestinos/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/inmunología , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/parasitología , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/patología
4.
Parasitol Res ; 118(5): 1343-1352, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30941496

RESUMEN

The peritoneal cavity has a microenvironment capable of promoting proliferation, differentiation, and activation of the resident cells and recruitment of blood cells through the capillary network involved in the peritoneum. Among the cells found in the peritoneal cavity, B-1 cells are a particular cell type that contains features that are not very well defined. These cells differ from conventional B lymphocytes (B-2) by phenotypic, functional, and molecular characteristics. B-1 cells can produce natural antibodies, migrate to the inflammatory focus, and have the ability to phagocytose pathogens. However, the role of B-1 cells in immunity against parasites is still not completely understood. Several experimental models have demonstrated that B-1 cells can affect the susceptibility or resistance to parasite infections depending on the model and species. Here, we review the literature to provide information on the peculiarities of B-1 lymphocytes as well as their interaction with parasites.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Helmintiasis/inmunología , Helmintos/inmunología , Inmunidad Humoral/inmunología , Parásitos/inmunología , Cavidad Peritoneal/citología , Infecciones por Protozoos/inmunología , Animales , Citocinas/biosíntesis , Citocinas/inmunología , Helmintiasis/parasitología , Humanos , Ratones , Peritoneo/citología , Peritoneo/inmunología , Infecciones por Protozoos/parasitología
5.
FEMS Yeast Res ; 18(2)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29409063

RESUMEN

Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis (PCM), a cause of disease in healthy and immunocompromised persons in Latin America. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. The development of the disease depends on factors associated with the host immune response and the infectious agent's characteristics, especially virulence. The oxidative stress response is an important virulence attribute in several fungi. In this study, we assessed the enzymatic repertoire of responses to oxidative stress in the Pb18 isolate with different degrees of virulence. The virulence of attenuated Pb18 (aPb18) strain was recovered after several animal passages. Virulent strain (vPb18) showed an effective fungal oxidative stress response and several genes involved in response to oxidative stress were up-regulated in this isolate. These genes expressed the same profile when we recovered the phenotypic virulence in attenuated strain aPb18. Our study demonstrated that attenuated P. brasiliensis recovered their virulence after serial animal passages (vPb18), and this process positively modulated the fungus's antioxidant repertoire.


Asunto(s)
Antioxidantes/metabolismo , Paracoccidioides/fisiología , Paracoccidioidomicosis/microbiología , Animales , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Viabilidad Microbiana/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Paracoccidioides/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Virulencia
6.
Parasite Immunol ; 40(9): e12571, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29974519

RESUMEN

This study established a protocol to purify Toxoplasma gondii tachyzoite microvesicles and exosomes, called as extracellular vesicles (EVs). In addition, the investigations were conducted to determine the kinetic of EV release by tachyzoites and whether EV proteins are able to modulate the host immune response. The particle size and concentration released by tachyzoites in culture medium at different incubation-period were characterized by nanoparticle tracking analysis. Tachyzoites (1 × 106 ) released around 4.37 ± 0.81 × 108 EVs/mL/h, with size varying between 138.2 and 171.9 nm. EVs released into the medium were purified by gel-exclusion chromatography and screened by ELISA, using a pool of human positive sera for toxoplasmosis. EV-fractions contained high concentration of proteins, and EVs were analyzed by scanning and transmission electron microscopies. Tachyzoites released EVs into the culture medium throughout all membrane surface, and these vesicles contain small RNAs/miRNA. Pooled sera from chronically infected human or mice (infected with 2 different T. gondii strains) recognized distinct EV electrophoretic patterns in immunoblotting. T. gondii EVs significantly induced IL-10, TNF-α and iNOS in murine macrophages. In conclusion, this study shows that T. gondii secrete/excrete EVs (microvesicles and exosomes) contain miRNA and they were immunologically recognized by host immune response.


Asunto(s)
Vesículas Extracelulares/inmunología , Toxoplasma/inmunología , Toxoplasmosis/parasitología , Animales , Ensayo de Inmunoadsorción Enzimática , Exosomas/inmunología , Exosomas/parasitología , Vesículas Extracelulares/parasitología , Humanos , Immunoblotting , Interleucina-10/genética , Interleucina-10/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Toxoplasma/genética , Toxoplasmosis/genética , Toxoplasmosis/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
7.
Parasitology ; 142(12): 1506-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26416198

RESUMEN

The immune response to leishmaniasis is complex, and the result of infection depends on both the genetic composition of the Leishmania species and the immunity of the host. Clinical and experimental evidence suggest that the activation of B cells leads to exacerbation of visceral leishmaniasis. However, the role of B-1 cells (a subtype of B lymphocytes) in the pathogenesis of experimental visceral leishmaniasis has not yet been elucidated. In this study, we investigated the importance of B-1 cells in experimental infection with Leishmania. (L.) chagasi. Our results showed that BALB/XID mice (X-linked immunodeficient mice which are genetically deficient in B-1 cells) infected with L. (L.) chagasi for 45 days had a significant reduction in parasite load in the spleen when compared with control mice. Cytokine analysis showed that the BALB/XID mice had lower amounts of IL-10 in their sera compared with control group. In addition, the transfer of B-1 cells from wild type mice into IL-10KO animals led to an increase in susceptibility to L. (L.) chagasi infection in the IL-10KO mice, suggesting that the IL-10 produced by these cells is important in experimental infection. Our results suggest that B-1 cells may play an important role in susceptibility to L. (L.) chagasi.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Citocinas/inmunología , Interleucina-10/inmunología , Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Animales , Susceptibilidad a Enfermedades , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/inmunología , Bazo/parasitología
8.
J Proteome Res ; 13(10): 4259-71, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25145636

RESUMEN

Few virulence factors have been identified for Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. In this study, we quantitatively evaluated the protein composition of P. brasiliensis in the yeast phase using minimal and rich media to obtain a better understanding of its virulence and to gain new insights into pathogen adaptation strategies. This analysis was performed on two isolates of the Pb18 strain showing distinct infection profiles in B10.A mice. Using liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis, we identified and quantified 316 proteins in minimal medium, 29 of which were overexpressed in virulent Pb18. In rich medium, 29 out of 295 proteins were overexpressed in the virulent fungus. Three proteins were found to be up-regulated in both media, suggesting the potential roles of these proteins in virulence regulation in P. brasiliensis. Moreover, genes up-regulated in virulent Pb18 showed an increase in its expression after the recovery of virulence of attenuated Pb18. Proteins up-regulated in both isolates were grouped according to their functional categories. Virulent Pb18 undergoes metabolic reorganization and increased expression of proteins involved in fermentative respiration. This approach allowed us to identify potential virulence regulators and provided a foundation for achieving a molecular understanding of how Paracoccidioides modulates the host-pathogen interaction to its advantage.


Asunto(s)
Proteínas Fúngicas/metabolismo , Paracoccidioides/patogenicidad , Proteómica , Espectrometría de Masas , Paracoccidioides/crecimiento & desarrollo , Paracoccidioides/metabolismo , Reacción en Cadena de la Polimerasa , ARN de Hongos/genética , ARN de Hongos/aislamiento & purificación , Virulencia
9.
Immunol Invest ; 43(7): 675-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24950194

RESUMEN

New Zealand Black X New Zealand White F1 [(NZB/NZW)F1] mice develop an autoimmune condition with similarities to human systemic lupus erythematosus (SLE). In this study, we demonstrate that B-1 cells, which have previously been reported to be involved in several autoimmune diseases, have altered gene expression in these mice. RNA was extracted from purified B-1 cells of disease-free C57BL/6 mice and lupus-prone (NZB/NZW)F1 mice. Gene expression was analysed using DNA microarray techniques and validated by real time reverse transcriptase polymerase chain reaction (RT-PCR). In (NZB/NZW)F1 mice, some genes had altered expression patterns compared to disease-free controls. Specifically, the upregulation of Ifitm1, Pvrl2 and Ifi202b and downregulation of Trp53bp1 mRNA were observed in (NZB/NZW)F1 mice. These genes are known to be associated with autoimmune diseases. This pattern of gene expression in B-1 cells could understanding of the pathogenesis of SLE. Thus, it is reasonable to hypothesise that the altered gene expression observed in B-1 cells in our experimental model is important for SLE prognosis and therapy, and these implications are discussed herein.


Asunto(s)
Linfocitos B/inmunología , Lupus Eritematoso Sistémico/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Materials (Basel) ; 17(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399167

RESUMEN

The use of copper as an antimicrobial agent has a long history and has gained renewed interest in the context of the COVID-19 pandemic. In this study, the authors investigated the antimicrobial properties of an alloy composed of copper with a small percentage of silver (Cu-0.03% wt.Ag). The alloy was tested against various pathogens, including Escherichia coli, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, and the H1N1 virus, using contact exposure tests. Results showed that the alloy was capable of inactivating these pathogens in two hours or less, indicating its strong antimicrobial activity. Electrochemical measurements were also performed, revealing that the small addition of silver to copper promoted a higher resistance to corrosion and shifted the formation of copper ions to higher potentials. This shift led to a slow but continuous release of Cu2+ ions, which have high biocidal activity. These findings show that the addition of small amounts of silver to copper can enhance its biocidal properties and improve its effectiveness as an antimicrobial material.

11.
J Fungi (Basel) ; 9(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36983543

RESUMEN

Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.

12.
Heliyon ; 9(11): e21225, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034704

RESUMEN

Allergic contact dermatitis (ACD) is an inflammatory skin reaction whose incidence has increased and has been associated with a dietary pattern rich in saturated fats and refined sugars. Considering the increased incidence of ACD and the lack of research about the influence of a short-term high-sugar diet on dermatitis, our aim is to improve understanding of the influence of a high-sugar diet on ACD. We introduced a diet rich in sugar fifteen days before inducing contact dermatitis with oxazolone, in mice, and maintained it until the end of the experiment, which lasted three weeks in total. The dermatitis model increased cholesterol and triglycerides in the liver, and the combination of diet and dermatitis increased weight and worsened liver cholesterol measurements. Furthermore, the high-sugar diet increased the production of IL-6, IFN-γ and TNF-α in the skin, which may be involved in the increase in epithelial skin thickness observed in experimental ACD.

13.
Microorganisms ; 11(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38138117

RESUMEN

Leishmania spp. is the aetiologic agent of leishmaniasis, a disease endemic in several developing countries. The parasite expresses and secretes several virulence factors that subvert the macrophage function and immune response. Extracellular vesicles (EVs) can carry molecules of the parasites that show immunomodulatory effects on macrophage activation and disease progression. In the present work, we detected a significantly higher expression of lpg3 and gp63 genes in Leishmania amazonensis promastigotes recovered after successive experimental infections (IVD-P) compared to those cultured for a long period (LT-P). In addition, we observed a significantly higher percentage of infection and internalized parasites in groups of macrophages infected with IVD-P. Macrophages previously treated with EVs from LT-P showed higher percentages of infection and production of inflammatory cytokines after the parasite challenge compared to the untreated ones. However, macrophages infected with parasites and treated with EVs did not reduce the parasite load. In addition, no synergistic effects were observed in the infected macrophages treated with EVs and reference drugs. In conclusion, parasites cultured for a long period in vitro and recovered from animals' infections, differently affected the macrophage response. Furthermore, EVs produced by these parasites affected the macrophage response in the early infection of these cells.

14.
J Extracell Biol ; 2(10): e117, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939734

RESUMEN

Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.

15.
Mycopathologia ; 174(1): 1-10, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22249604

RESUMEN

Paracoccidioidomycosis (PCM) is a systemic granulomatous disease, endemic in Latin America, caused by the thermal dimorphic fungus Paracoccidioides brasiliensis. Although some fungal antigens have already been characterized and used for serological diagnosis, cross-reactions have been frequently observed. Thus, the examination of fungal forms in clinical specimens or isolation of P. brasiliensis by culture is still the most frequent method for the diagnosis of this mycosis. In this study, a random peptide phage display library was used to select mimotopes of P. brasiliensis, which were employed as antigens in an indirect enzyme-linked immunosorbent assay. The protective monoclonal antibody against experimental PCM (anti-gp75) was used as molecular target to screen a phage display library. That approach led to a synthetic peptide named P2, which was synthesized and tested against PCM patients' sera to check whether it was recognized. There was significant recognition of P2 by sera of untreated PCM patients when compared with normal human sera. Sera from treated PCM group, patients with other mycosis or co-infected with HIV had much lower recognition of P2 than untreated patient group. The test showed a sensitivity of 100 and 94.59% of specificity in relation to human sera control. These data indicate a potential use of P2 as diagnostic tool in PCM. Its application for serological diagnosis of PCM may contribute to the development and standardization of simpler, faster and highly reproducible immunodiagnostic tests at low cost.


Asunto(s)
Anticuerpos Antifúngicos/sangre , Micología/métodos , Paracoccidioidomicosis/diagnóstico , Péptidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Biblioteca de Péptidos , Péptidos/aislamiento & purificación , Sensibilidad y Especificidad , Pruebas Serológicas/métodos
16.
Immunobiology ; 227(6): 152280, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179431

RESUMEN

B-1 lymphocytes are a subtype of B cells with functional and phenotypic features that differ from conventional B lymphocytes. These cells are mainly located in mice's pleural and peritoneal cavities and express unconventional B cell surface markers. B-1 cells participate in immunity by producing antibodies, cytokines, and chemokines and physically interacting with other immune cells. In addition, B-1 cells can differentiate into mononuclear phagocyte-like cells and phagocytize several pathogens. However, the activation and differentiation of B-1 cells are not entirely understood. It is known that several factors can influence B-1 cells, such as pathogens components and the immune response. This work aimed to evaluate the influence of chronic stress on B-1 cell activation and differentiation into phagocytes. The experimental sleep restriction was used as a stress model since the sleep alteration alters several immune cells' functions. Thus, mice were submitted to sleep restriction for 21 consecutive days, and the activation and differentiation of B-1 cells were analyzed. Our results demonstrated that B-1 cells initiated the differentiation process into mononuclear phagocytes after the period of sleep restriction. In addition, we detected a significant decrease in lymphoid lineage commitment factors (EBF, E2A, Blnk) (*P < 0.05) and an increase in the G-CSFR gene (related to the myeloid lineage commitment factor) (****P < 0.0001), as compared to control mice no submitted to sleep restriction. An increase in the co-stimulatory molecules CD80 and CD86 (**P < 0.01 and *P < 0.05, respectively) and a higher production of nitric oxide (NO) (*P < 0.05) and reactive oxygen species (ROS) (*P < 0.05) were also observed in B-1 cells from mice submitted to sleep restriction. Nevertheless, B-1 cells from sleep-restricted mice showed a significant reduction in the Toll-like receptors (TLR)-2, -6, and -9, and interleukine-10 (IL-10) cytokine expression (***P < 0.001) as compared to control. Sleep-restricted mice intraperitoneally infected withL. amazonensispromastigotes showed a reduction in the average internalized parasites (*P < 0.05) by B-1 cells. These findings suggest that sleep restriction interferes with B-1 lymphocyte activation and differentiation. In addition, b-1 cells assumed a more myeloid profile but with a lower phagocytic capacity in this stress condition.


Asunto(s)
Subgrupos de Linfocitos B , Activación de Linfocitos , Ratones , Animales , Diferenciación Celular , Linfocitos B , Citocinas/metabolismo , Sueño
17.
J Immunol Res ; 2021: 7809637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977257

RESUMEN

Depending on Leishmania species and the presence/absence of virulence factors, Leishmania extracellular vesicles (EVs) can differently stimulate host immune cells. This work is aimed at characterizing and evaluating the protective role of EVs released by Leishmania amazonensis promastigotes under different maintenance conditions. Initially, using a control strain, we standardized 26°C as the best release temperature to obtain EVs with a potential protective role in the experimental leishmaniasis model. Then, long-term (LT-P) promastigotes of L. amazonensis were obtained after long-term in vitro culture (100 in vitro passages). In vivo-derived (IVD-P) promastigotes of L. amazonensis were selected after 3 consecutive experimental infections in BALB/c mice. Those strains developed similar lesion sizes except for IVD-P at 8 weeks post infection. No differences in EV production were detected in both strains. However, the presence of LPG between LT-P and IVD-P EVs was different. Groups of mice immunized with EVs emulsified in the adjuvant and challenged with IVD-P parasites showed decreased lesion size and parasitic load compared with the nonimmunized groups. The immunization regimen with two doses showed high IFN-γ and IgG2a titers in challenged mice with either IVD-P or LT-P EVs. IL-4 and IL-10 were detected in immunized mice, suggesting a mixed Th1/Th2 profile. EVs released by either IVD-P or LT-P induced a partial protective effect in an immunization model. Thus, our results uncover a potential protective role of EVs from L. amazonensis for cutaneous leishmaniasis. Moreover, long-term maintenance under in vitro conditions did not seem to affect EV release and their immunization properties in mice.


Asunto(s)
Vesículas Extracelulares/metabolismo , Leishmania/fisiología , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Animales , Inmunidad , Ratones , Ratones Endogámicos BALB C
18.
J Fungi (Basel) ; 7(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557381

RESUMEN

The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.

19.
J Fungi (Basel) ; 7(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34946996

RESUMEN

Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a ß-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher ß-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify ß-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.

20.
J Immunol Res ; 2021: 2939693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604391

RESUMEN

All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-ß-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.


Asunto(s)
Vesículas Extracelulares/inmunología , Macrófagos/inmunología , Estrés Fisiológico/inmunología , Trypanosoma cruzi/inmunología , Animales , Línea Celular , Células Cultivadas , Frío , Vesículas Extracelulares/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Concentración de Iones de Hidrógeno , Inmunidad/genética , Inmunidad/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nitrito de Sodio/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA