Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 126(49): 9147-9153, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36469759

RESUMEN

Chemical interaction between the tips and molecules is one of the main contributing mechanisms to tip-enhanced Raman spectroscopy (TERS). In this work, we calculate the TERS spectra of the biphenylene (BP) dimer at 13 nonequivalent tip sites by means of density functional theory and explore the influence of the TERS tip on vibrational mode characters and Raman intensity. The Raman intensity of the vibrational mode involving the antisymmetric stretching of tetra-rings is found to be specifically enhanced. We attribute this specific enhancement to the electronic sensitive atom vibrational character of the mode and infer that the vibrational strength of atoms can be tuned by the TERS tip. The results provide an intuitive interpretation on the effects of tip-induced electronic redistributions on specific vibrational modes in TERS and indicate the possibility to further improve the TERS resolution.

2.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059555

RESUMEN

A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance. The performance of this type of surface plasmon resonance (SPR) sensor has been previously verified both theoretically and experimentally. With the proposed Au-graphene structure D-type fiber biosensor, the SPR behaviors are obtained and discussed. In the detection of ethanol solution, a red shift of 40 nm is found between the refractive index of 1.3330 and 1.3657. By calculation, the sensitivity of the sensor we designed is 1223 nm/RIU. Besides, the proposed sensor can detect the nucleotide bonding between the double-stranded DNA helix structures. Thus, our sensors can distinguish between mismatched DNA sequences.


Asunto(s)
Oro/química , Grafito/química , Nanopartículas/química , Resonancia por Plasmón de Superficie , ADN/análisis , Tecnología de Fibra Óptica/instrumentación , Espectrometría Raman
3.
Nanomaterials (Basel) ; 9(8)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408969

RESUMEN

In this paper, a graphene/ITO nanorod metamaterial/U-bent-annealing (Gr/ITO-NM/U-bent-A)-based U-bent optical fiber local surface plasmon resonance (LSPR) sensor is presented and demonstrated for DNA detection. The proposed sensor, compared with other conventional sensors, exhibits higher sensitivity, lower cost, as well as better biological affinity and oxidize resistance. Besides, it has a structure of an original Indium Tin Oxides (ITO) nanocolumn array coated with graphene, allowing the sensor to exert significant bulk plasmon resonance effect. Moreover, for its discontinuous structure, a larger specific surface area is created to accommodate more biomolecules, thus maximizing the biological properties. The fabricated sensors exhibit great performance (690.7 nm/RIU) in alcohol solution testing. Furthermore, it also exhibits an excellent linear response (R2 = 0.998) to the target DNA with respective concentrations from 0.1 to 100 nM suggesting the promising medical applications of such sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA