Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pathol ; 241(1): 67-79, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27741356

RESUMEN

The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Adenocarcinoma/genética , Proteínas Portadoras/genética , Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/genética , Haploinsuficiencia/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/secundario , Animales , Proteínas Portadoras/biosíntesis , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Femenino , Eliminación de Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones Desnudos , Invasividad Neoplásica , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Ensayo de Tumor de Célula Madre
2.
Invest New Drugs ; 32(6): 1105-1112, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25085205

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective cyclooxygenase-2 (COX-2) inhibitors (COXIBs) can reduce the risk of developing colorectal cancer (CRC) and are being considered for use as adjuvant therapy for treatment of CRC patients. However, long-term use of most NSAIDs, except aspirin, increases cardiovascular risk, hampering use of these drugs in CRC prevention and possibly for treatment. CG100649 is a new member of the COXIB family, which is proposed to inhibit both COX-2 and carbonic anhydrase-I/-II (CA-I/-II) activity. Using mouse models, we show here that CG100649 inhibits premalignant and malignant colorectal lesions in mouse models, partly through inhibiting tumor cell proliferation. These pre-clinical findings suggest a need for further exploration of CG100649 for CRC prevention and treatment. The long-term safety profile of CG100649, particularly regarding its effect on cardiovascular risk, is yet to be determined.


Asunto(s)
Adenoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Carcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Furanos/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/metabolismo , Furanos/farmacología , Humanos , Ratones , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biochem J ; 395(3): 653-62, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16417524

RESUMEN

The transactivation of nuclear receptors is regulated by both ligand binding and phosphorylation. We previously showed that RARalpha (retinoic acid receptor alpha) phosphorylation by c-Jun N-terminal kinase contributes to retinoid resistance in a subset of NSCLC cells (non-small cell lung cancer cells), but the aetiology of this resistance in the remainder has not been fully elucidated [Srinivas, Juroske, Kalyankrishna, Cody, Price, Xu, Narayanan, Weigel and Kurie (2005) Mol. Cell. Biol. 25, 1054-1069]. In the present study, we report that Akt, which is constitutively activated in NSCLC cells, phosphorylates RARalpha and inhibits its transactivation. Biochemical and functional analyses showed that Akt interacts with RARalpha and phosphorylates the Ser96 residue of its DNA-binding domain. Mutation of Ser96 to alanine abrogated the suppressive effect of Akt. Overexpression of a dominant-negative form of Akt in an NSCLC cell line decreased RAR phosphorylation, increased RAR transactivation and enhanced the growth-inhibitory effects of an RAR ligand. The findings presented here show that Akt inhibits RAR transactivation and contributes to retinoid resistance in a subset of NSCLC cells.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/metabolismo , Activación Transcripcional , Animales , Línea Celular , Chlorocebus aethiops , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Humanos , Ligandos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Receptor alfa de Ácido Retinoico , Retinoides/farmacología , Especificidad por Sustrato , Activación Transcripcional/genética
4.
Nat Med ; 18(2): 224-6, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22270723

RESUMEN

Although aberrant DNA methylation is considered to be one of the key ways by which tumor-suppressor and DNA-repair genes are silenced during tumor initiation and progression, the mechanisms underlying DNA methylation alterations in cancer remain unclear. Here we show that prostaglandin E(2) (PGE(2)) silences certain tumor-suppressor and DNA-repair genes through DNA methylation to promote tumor growth. These findings uncover a previously unrecognized role for PGE(2) in the promotion of tumor progression.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Dinoprostona/farmacología , Neoplasias Intestinales/metabolismo , Animales , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Reparación del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Supresores de Tumor/efectos de los fármacos , Humanos , Neoplasias Intestinales/fisiopatología , Ratones , Regulación hacia Arriba , ADN Metiltransferasa 3B
6.
Cancers (Basel) ; 3(4): 3894-908, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24213116

RESUMEN

Colorectal cancer (CRC) is now the second-leading cause of cancer deaths in the USA. Colorectal cancer progression and metastasis depends on the orchestration of the aberrant signaling pathways that control tumor cell proliferation, survival and migration/invasion. Epidemiological, clinical, and animal studies have demonstrated that prostaglandin-endoperoxide synthase 2 (PTGS2) and epithelial growth factor (EGF) signaling pathways play key roles in promoting colorectal cancer growth and metastasis. In this review, we highlight major advances in our understanding of the roles of PTGS2 and EGF signaling in colorectal cancer.

7.
Cancer Res ; 70(2): 824-31, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20068165

RESUMEN

Prostaglandin E(2) (PGE(2)), one of the downstream products of cyclooxygenase-2 enzymatic activity, promotes colorectal carcinogenesis in part by stimulating cell division. In this study, we define a critical mechanism in this process by showing that the prometastatic adapter protein human enhancer of filamentation 1 (HEF1; NEDD9) links PGE(2) to the cell cycle machinery in colorectal cancer cells. PGE(2) rapidly induced expression of HEF1 mRNA and protein in colorectal cancer cells. HEF1 overexpression elicited the same effects as PGE(2) treatment on cell proliferation, cell cycle progression, and tumor growth. Conversely, HEF1 knockdown suppressed PGE(2)-driven cell proliferation and cell cycle progression. Cell cycle alterations involved HEF1 fragmentation as well as co-distribution of HEF1 and cell cycle kinase Aurora A along spindle asters during cell division. Moreover, Aurora A co-immunoprecipitated with HEF1 and was activated by HEF1. Consistent with a role for HEF1 in colorectal carcinogenesis, we found elevated expression of HEF1 expression in 50% of human colorectal cancers examined, relative to paired normal tissues. These findings establish that PGE(2) induces HEF1 expression, which in turn promotes cell cycle progression through its interaction with and activation of Aurora A. Further, they establish that HEF1 is a crucial downstream mediator of PGE(2) action during colorectal carcinogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Dinoprostona/farmacología , Fosfoproteínas/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Aurora Quinasa A , Aurora Quinasas , Ciclo Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Humanos , Ratones , Ratones Desnudos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética
8.
Cancer Res ; 70(10): 4054-63, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20442290

RESUMEN

Human enhancer of filamentation 1 (HEF1; also known as NEDD9 or Cas-L) is a scaffolding protein that is implicated in regulating diverse cellular processes, such as cellular attachment, motility, cell cycle progression, apoptosis, and inflammation. Here, we identify HEF1 as a novel hypoxia-inducible factor-1alpha (HIF-1alpha)-regulated gene and reveal that HEF1 mediates hypoxia-induced migration of colorectal carcinoma cells. HEF1 is highly expressed in cultured colorectal carcinoma cells exposed to hypoxia and in the hypoxic areas of human colorectal cancer (CRC) specimens. Moreover, our data show that HIF-1alpha mediates the effects of hypoxia on induction of HEF1 expression via binding to a hypoxia-responsive element of the HEF1 promoter. Importantly, the induction of HEF1 expression significantly enhances hypoxia-stimulated HIF-1alpha transcriptional activity by modulating the interaction between HIF-1alpha and its transcriptional cofactor p300. Inhibition of HEF1 expression also reduced the levels of hypoxia-inducible genes, including those that regulate cell motility. Cell migration was reduced dramatically following knockdown of HEF1 expression under hypoxic conditions. Thus, this positive feedback loop may contribute to adaptive responses of carcinoma cells encountering hypoxia during cancer progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Movimiento Celular , Neoplasias Colorrectales/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Fosfoproteínas/fisiología , Western Blotting , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Técnica del Anticuerpo Fluorescente , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunoprecipitación , Luciferasas/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
9.
J Immunol ; 179(3): 1926-33, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17641059

RESUMEN

MAPK kinase 4 (MKK4) is a dual-specificity kinase that activates both JNK and p38 MAPK. However, the mechanism by which MKK4 regulates TNF-induced apoptosis is not fully understood. Therefore, we used fibroblasts derived from MKK4 gene-deleted (MKK4-KO) mice to determine the role of this kinase in TNF signaling. We found that when compared with the wild-type cells, deletion of MKK4 gene enhanced TNF-induced apoptosis, and this correlated with down-regulation of TNF-induced cell-proliferative (COX-2 and cyclin D1) and antiapoptotic (survivin, IAP1, XIAP, Bcl-2, Bcl-x(L), and cFLIP) gene products, all regulated by NF-kappaB. Indeed we found that TNF-induced NF-kappaB activation was abrogated in MKK4 gene-deleted cells, as determined by DNA binding. Further investigation revealed that TNF-induced I kappaB alpha kinase activation, I kappaB alpha phosphorylation, I kappaB alpha degradation, and p65 nuclear translocation were all suppressed in MKK4-KO cells. NF-kappaB reporter assay revealed that NF-kappaB activation induced by TNF, TNFR1, TRADD, TRAF2, NIK, and I kappaB alpha kinase was modulated in gene-deleted cells. Overall, our results indicate that MKK4 plays a central role in TNF-induced apoptosis through the regulation of NF-kappaB-regulated gene products.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Apoptosis/inmunología , Regulación hacia Abajo/inmunología , Eliminación de Gen , Marcación de Gen , MAP Quinasa Quinasa 4/genética , FN-kappa B/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/fisiología , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Ciclina D1/biosíntesis , Ciclina D1/genética , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Regulación hacia Abajo/genética , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/inmunología , MAP Quinasa Quinasa 4/deficiencia , MAP Quinasa Quinasa 4/fisiología , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , FN-kappa B/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/biosíntesis , Receptores Tipo II del Factor de Necrosis Tumoral/genética
10.
J Biol Chem ; 282(6): 3507-19, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17158870

RESUMEN

Mitogen-activated protein kinase kinase-4 (MKK4/SEK1) cooperates with phosphatidylinositol 3-kinase to maintain the survival of non-small cell lung cancer (NSCLC) cells, but the biochemical basis of this phenomenon has not been elucidated. Here we used genetic approaches to modulate MKK4 expression in mouse embryo fibroblasts (MEF cells) and NSCLC cells to identify prosurvival signals downstream of MKK4. Relative to wild-type MEF cells, MKK4-null MEF cells were highly susceptible to apoptosis by LY294002, paclitaxel, or serum starvation. MKK4 promoted the survival of MEF cells by decreasing the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN). MKK4 inhibited PTEN transcription by activating NFkappaB, a transcriptional suppressor of PTEN. MKK4 was required for nuclear translocation of RelA/p65 and processing of the NFkappaB2 precursor (p100) into the mature form (p52). Studies on a panel of NSCLC cell lines revealed a subset with high MKK4/high NFkappaB/low PTEN that was relatively resistant to apoptosis. Thus, MKK4 promotes cell survival by activating phosphatidylinositol 3-kinase through an NFkappaB/PTEN-dependent pathway.


Asunto(s)
MAP Quinasa Quinasa 4/fisiología , FN-kappa B/fisiología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/biosíntesis , Transducción de Señal/fisiología , Animales , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/fisiología , Embrión de Mamíferos/citología , Fibroblastos/enzimología , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MAP Quinasa Quinasa 4/deficiencia , MAP Quinasa Quinasa 4/genética , Ratones , Mutagénesis Sitio-Dirigida , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/genética
11.
J Biol Chem ; 278(26): 23630-8, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12714585

RESUMEN

Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.


Asunto(s)
Neoplasias Pulmonares/patología , MAP Quinasa Quinasa 4 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Supervivencia Celular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Neoplasias Pulmonares/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Mutación , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/fisiología , Monoéster Fosfórico Hidrolasas , Transducción de Señal , Transfección , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA