Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biomacromolecules ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007721

RESUMEN

As an emerging biomedical material, wound dressings play an important therapeutic function in the process of wound healing. It can provide an ideal healing environment while protecting the wound from a complex external environment. A hydrogel wound dressing composed of tilapia skin gelatin (Tsg) and fucoidan (Fuc) was designed in this article to enhance the microenvironment of wound treatment and stimulate wound healing. By mixing horseradish peroxidase (HRP), hydrogen peroxide (H2O2), tilapia skin gelatin-tyramine (Tsg-Tyr), and carboxylated fucoidan-tyramine in agarose (Aga), using the catalytic cross-linking of HRP/H2O2 and the sol-gel transformation of Aga, a novel gelatin-fucoidan (TF) double network hydrogel wound dressing was constructed. The TF hydrogels have a fast and adjustable gelation time, and the addition of Aga further enhances the stability of the hydrogels. Moreover, Tsg and Fuc are coordinated with each other in terms of biological efficacy, and the TF hydrogel demonstrated excellent antioxidant properties and biocompatibility in vitro. Also, in vivo wound healing experiments showed that the TF hydrogel could effectively accelerate wound healing, reduce wound microbial colonization, alleviate inflammation, and promote collagen deposition and angiogenesis. In conclusion, TF hydrogel wound dressings have the potential to replace traditional dressings in wound healing.

2.
Mar Drugs ; 22(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38921598

RESUMEN

To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.


Asunto(s)
Quitina , Quitinasas , Micromonospora , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/genética , Quitina/análogos & derivados , Quitina/metabolismo , Quitina/química , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Micromonospora/enzimología , Micromonospora/genética , Hidrólisis , Escherichia coli/genética , Quitosano/química , Estabilidad de Enzimas
3.
J Sci Food Agric ; 104(9): 5419-5434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38334319

RESUMEN

BACKGROUND: Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS: The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION: These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Microbioma Gastrointestinal , Juglans , Hidrolisados de Proteína , Tilapia , Animales , Juglans/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/administración & dosificación , Hidrolisados de Proteína/farmacología , Tilapia/metabolismo , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas de Peces/metabolismo , Proteínas de Peces/química , Humanos , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas , Sinergismo Farmacológico , Cognición/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Suplementos Dietéticos/análisis
4.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36315047

RESUMEN

According to the World Health Organization, cardiovascular disease (CVD) has become a major cause of chronic illness around the globe. It has been reported that soy-based fermented food (SFF) is very effective in preventing thrombus (one of the most important contributing factors to CVD), which are mainly attributed to the bioactive substances, especially the fibrinolytic enzymes (FE) generated by microorganisms during the fermentation process of soybean food. This paper therefore mainly reviewed the microbial fibrinolytic enzymes (MFE) from SFF. We first discuss the use of microbial fermentation to produce FE, with an emphasis on the strains involved. The production, purification, physicochemical properties, structure-functional attributes, functional properties and possible application of MFE from SFF are then discussed. Finally, current limitations and future perspectives for the production, purification, and the practical application of MFE are discussed. MFE from SFF pose multiple health benefits, including thrombolysis, antihypertension, anti-inflammatory, anti-hyperlipidemia, anticancer, neuroprotective, antiviral and other activities. Therefore, they exhibit great potential for functional foods and nutraceutical applications, especially foods with CVDs prevention potential.

5.
J Nanobiotechnology ; 20(1): 426, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153602

RESUMEN

BACKGROUND: Skin tissue is vital in protecting the body from injuries and bacterial infections. Wound infection caused by bacterial colonization is one of the main factors hindering wound healing. Wound infection caused by colonization of a large number of bacteria can cause the wound to enter a continuous stage of inflammation, which delays wound healing. Hydrogel wound dressing is composed of natural and synthetic polymers, which can absorb tissue fluid, improve the local microenvironment of wound, and promote wound healing. However, in the preparation process of hydrogel, the complex preparation process and poor biological efficacy limit the application of hydrogel wound dressing in complex wound environment. Therefore, it is particularly important to develop and prepare hydrogel dressings with simple technology, good physical properties and biological effects by using natural polymers. RESULTS: In this study, a gelatin-based (Tsg-THA&Fe) hydrogel was created by mixing trivalent iron (Fe3+) and 2,3,4-trihydroxybenzaldehyde (THA) to form a complex (THA&Fe), followed by a simple Schiff base reaction with tilapia skin gelatin (Tsg). The gel time and rheological properties of the hydrogels were adjusted by controlling the number of complexes. The dynamic cross-linking of the coordination bonds (o-phthalmictriol-Fe3+) and Schiff base bonds allows hydrogels to have good self-healing and injectable properties. In vitro experiments confirmed that the hydrogel had good biocompatibility and biodegradability as well as adhesion, hemostasis, and antibacterial properties. The feasibility of Tsg-THA&Fe hydrogel was studied by treating rat skin trauma model. The results showed that compared with Comfeel® Plus Transparent dressing, the Tsg-THA&Fe hydrogel could obvious reduce the number of microorganisms, prevent bacterial colonization, reduce inflammation and accelerate wound healing. Local distribution of the Tsg-THA&Fe hydrogel in the skin tissue did not cause organ toxicity. CONCLUSIONS: In summary, the preparation process of Tsg-THA&Fe hydrogel is simple, with excellent performance in physical properties and biological efficacy. It can effectively relieve inflammation and control the colonization of wound microbes, and can be used as a multi-functional dressing to improve wound healing.


Asunto(s)
Hidrogeles , Infección de Heridas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Inflamación , Hierro , Polímeros/farmacología , Ratas , Bases de Schiff , Cicatrización de Heridas
6.
Molecules ; 26(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923773

RESUMEN

In this study, we compared the characteristics and in vitro anti-inflammatory effects of two curcumin liposomes, prepared with golden pompano head phospholipids (GPL) and soybean lecithin (SPC). GPL liposomes (GPL-lipo) and SPC liposomes (SPC-lipo) loaded with curcumin (CUR) were prepared by thin film extrusion, and the differences in particle size, ζ-potential, morphology, and storage stability were investigated. The results show that GPL-lipo and SPC-lipo were monolayer liposomes with a relatively small particle size and excellent encapsulation rates. However, GPL-lipo displayed a larger negative ζ-potential and better storage stability compared to SPC-lipo. Subsequently, the effects of phospholipids in regulating the inflammatory response of macrophages were evaluated in vitro, based on the synergistic effect with CUR. The results showed that both GPL and SPC exerted excellent synergistic effect with CUR in inhibiting the lipopolysaccharide (LPS)-induced secretion of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory genes (tumor necrosis factor (TNF)-α, interleukin 1ß (IL-ß), and interleukin 6 (IL-6)) in RAW264.7 cells. Interestingly, GPL-lipo displayed superior inhibitory effects, compared to SPC-lipo. The findings provide a new innovative bioactive carrier for development of stable CUR liposomes with good functional properties.


Asunto(s)
Antiinflamatorios/química , Curcumina/química , Glycine max/química , Liposomas/química , Fosfolípidos/química , Animales , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lecitinas/química , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
J Sci Food Agric ; 101(4): 1636-1645, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888322

RESUMEN

BACKGROUND: The growing consumer demand for healthy products has encouraged the development of low-salt meat products. In this study, to develop low-salt restructured tilapia (Oreochromis mossambicus) meat products, citric acid was used to improve the properties of restructured tilapia products. RESULTS: In comparison with control restructured fish products (RP) and surimi products (SP), 0.2% citric acid-treated restructured fish products (RPC) and surimi products (SPC) showed a significant decrease in expressible water and water activity and a remarkable increase in whiteness, dry matter, hardness, chewiness, gumminess, and acceptability. Mechanistic studies suggested that citric acid significantly changed the content of total protein and myofibrillar proteins and promoted degradation of heavy myosin chains. Fourier-transform infrared and Raman spectra revealed the citric acid-mediated alteration in the peak intensities of amide I and amide II bands, which changed the secondary structures of RPC and SPC. CONCLUSION: It is feasible to prepare low-salt restructured tilapia meat products using citric acid, which offers a means of using muscle by-products and exploiting new functional products with an added commercial value. © 2020 Society of Chemical Industry.


Asunto(s)
Ácido Cítrico/análisis , Productos Pesqueros/análisis , Proteínas de Peces/química , Cloruro de Sodio/análisis , Animales , Manipulación de Alimentos , Dureza , Humanos , Gusto , Tilapia
8.
Molecules ; 25(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31906039

RESUMEN

Gadus morhua eggs contain several nutrients, including polyunsaturated fatty acids, lecithin and glycoproteins. A novel sialoglycopeptide from the eggs of G. morhua (Gm-SGPP) was extracted with 90% phenol and purified by Q Sepharose Fast Flow (QFF) ion exchange chromatography, followed by S-300 gel filtration chromatography. Gm-SGPP contained 63.7% carbohydrate, 16.2% protein and 18.6% N-acetylneuraminic acid. High-performance size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that Gm-SGPP is a 7000-Da pure sialoglycopeptide. ß-elimination reaction suggested that Gm-SGPP contained N-glycan units. Amino acid N-terminal sequence analysis indicated the presence of Ala-Ser-Asn-Gly-Thr-Gln-Ala-Pro amino acid sequence. Moreover, N-glycan was connected at the third Asn location of the peptide chain through GlcNAc. Gm-SGPP was composed of D-mannose, D-glucuronic acid and D-galactose. Fourier transform-infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance spectroscopy (1H-NMR) and methylation analysis were performed to reveal the structure profile of Gm-SGPP. In vitro results showed that the proliferation activity of MC3T3-E1 cells was significantly promoted by Gm-SGPP. In vivo data revealed that Gm-SGPP increased the calcium and phosphorus content of tibias and promoted longitudinal bone growth in adolescent rats.


Asunto(s)
Gadus morhua/metabolismo , Osteogénesis/efectos de los fármacos , Óvulo/química , Sialoglicoproteínas/farmacología , Tibia/crecimiento & desarrollo , Secuencias de Aminoácidos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/farmacología , Ratones , Peso Molecular , Fósforo/análisis , Ratas , Sialoglicoproteínas/química , Sialoglicoproteínas/genética , Espectroscopía Infrarroja por Transformada de Fourier , Tibia/química , Tibia/efectos de los fármacos
10.
J Agric Food Chem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856739

RESUMEN

Astaxanthin (AST), mainly found in algae and shrimp, is a liposoluble ketone carotenoid with a wide range of biological activities and is commonly used in healthcare interventions and cosmetics. AST has a long chain of conjugated double bonds with hydroxyl and ketone groups at both ends, enabling it to form astaxanthin esters (AST-Es) through esterification with fatty acids. The fatty acid structure of AST plays a key role in the stability, antioxidant activity, and bioavailability of AST-Es. Antarctic krill (Euphausia superba) and blood-red algae Haematococcus Pluvialis (H pluvialis)-derived AST-Es exhibit strong antioxidant activity and numerous biological activities, such as improving insulin resistance, preventing Parkinson's disease, regulating intestinal flora, and alleviating inflammatory bowel disease. This review discusses the significance of AST-Es as functional food ingredients, highlighting their nutritional value, phytochemical structure, biological activities, and potential applications in the food industry.

11.
Environ Sci Pollut Res Int ; 31(9): 13175-13184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38240970

RESUMEN

The crystal structure has a significant impact on the electrochemical properties of electrode material, and thus influences the electrocatalytic activity of the electrode. In this work, α-, ß-, and γ-MnO2 electrodes were fabricated and applied for investigating the effect of crystal structure on electro-oxidation treatment of N,N-dimethylacetamide (DMAC) containing wastewater. The prepared MnO2 electrodes were characterized by scanning electron microscopy and X-ray diffraction, suggesting that different crystal structures of MnO2 electrodes with the same morphology of stacking-needle structure were successfully prepared. The electrochemical performances, including removal efficiencies of DMAC, chemical oxygen demand (COD) and total nitrogen (TN), and energy consumption, were compared between different MnO2 electrodes. Results indicated that ß-MnO2 electrode presented the excellent electrochemical activity, and could remove 93% DMAC, 62% COD, and 78.9% TN, which was much higher than that of α- and γ-MnO2; moreover, energy consumptions of 11.3, 9.7, and 10.5 kWh/m3 were calculated for α-, ß-, and γ-MnO2, respectively. Additionally, the oxidation mechanism of the MnO2 electrodes was presented, indicating that DMAC was mainly oxidized by hydroxyl radical through reactions of hydroxylation, demethylation, and deamination, and electrode characteristics of specific surface area, oxygen evolution potential, and hydroxyl radical production were the key factors for degrading DMAC on MnO2 electrodes. Finally, an actual DMAC containing wastewater was applied for testing the electrochemical performance of the three electrodes, and ß-MnO2 electrode was verified as the suitable electrode for potential application which achieved removal efficiencies of 100%, 64.5%, and 73% for DMAC, COD, and TN, respectively, after system optimization.


Asunto(s)
Acetamidas , Óxidos , Contaminantes Químicos del Agua , Óxidos/química , Aguas Residuales , Compuestos de Manganeso/química , Radical Hidroxilo , Contaminantes Químicos del Agua/análisis , Electrodos
12.
Foods ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928741

RESUMEN

The polysaccharides were extracted from the leaves of Mallotus oblongifolius (MO) using an ultrasonic-assisted extraction method in this study. The main variables affecting the yield of polysaccharides extracted from Mallotus appallatus (MOPS) were identified and optimized while concurrently investigating its antioxidant capacity, hypoglycemic activity, and digestive properties. The results indicated that the optimal ultrasound-assisted extraction of MOPS involved an ultrasound power of 200 W, a liquid-to-solid ratio of 25:1 (mL:g), an extraction temperature of 75 °C, and an ultrasound time of 45 min, leading to an extraction yield of (7.36 ± 0.45)% (m/m). The MOPS extract exhibited significant scavenging activity against DPPH and ABTS radicals with IC50 values of (25.65 ± 0.53) µg/mL and (100.38 ± 0.38) µg/mL, respectively. Furthermore, it effectively inhibited the enzymatic activities of α-glucosidase and α-amylase with IC50 values of (2.27 ± 0.07) mg/mL and (0.57 ± 0.04) mg/mL, respectively. The content of MOPS remained relatively stable in the stomach and small intestine; however, their ability to scavenge DPPH radicals and ABTS radicals and exhibit reducing power was attenuated, and the inhibition of α-amylase and α-glucosidase activity was diminished. In conclusion, the ultrasonic extraction of MOPS showed feasibility and revealed antioxidant and hypoglycemic effects. However, the activities were significantly reduced after gastric and small intestinal digestion despite no significant change in the MOPS content.

13.
Food Chem ; 447: 139029, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513480

RESUMEN

Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.


Asunto(s)
Acetaldehído/análogos & derivados , Quitosano , Imidazoles , Quitosano/química , Polifenoles , Antioxidantes/química , Ácido Gálico/química
14.
Foods ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38790731

RESUMEN

Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.

15.
Environ Technol ; 34(13-16): 2301-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350485

RESUMEN

In this study, porous suspended ceramsite with a specific density close to that of water was prepared by high-temperature calcination using fly ash, feldspar, calcite, fired talc and kaolin as the raw materials. The ceramsite was modified by activated carbon/Fe3O4 magnetic composites. The optimum modification conditions determined by methylene blue adsorption experiment were: KOH/glucose ratio of 1.5:1, carbonization temperature of 400 degrees C, activation temperature of 850 degrees C, activation time of 1 h, and Fe3O4/KOH+glucose ratio of 1:10. The results demonstrated that the adsorption capacity of the modified ceramsite for methylene blue was significantly higher than that of the unmodified ones. The presence of the composites did not lead to significant decrease in the mechanical properties of the modified ceramsite. Moreover, the modified ceramsite showed good resistance towards acid and alkali. The modified ceramsite can be used as biocarrier and adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by a simple magnetic procedure.


Asunto(s)
Carbono/química , Nanopartículas de Magnetita/química , Materiales Manufacturados , Silicatos/química , Purificación del Agua/instrumentación , Carbonato de Calcio/química , Ceniza del Carbón , Calor , Porosidad , Propiedades de Superficie , Purificación del Agua/métodos
16.
Ultrason Sonochem ; 98: 106511, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423070

RESUMEN

Areca nut (Areca catechu L.) seeds are rich in polyphenols, while few studies focused on it. This study was designed to obtain the maximum extraction yield of areca nut seed polyphenol (ACP). An ultrasonic-assisted extraction method optimized by response surface methodology (RSM) was established to extract ACP. Under the optimal conditions (ultrasonic power of 87 W, ethanol concentration of 65%, extraction temperature of 62℃, and extraction time of 153 min), the actual extraction yield of ACP was 139.62 mg/g. Then we investigated the effects of ACP on the proliferation, differentiation and mineralization of MC3T3-E1 pre-osteoblasts. Results suggested that ACP notably promoted the proliferation of MC3T3-E1 cells without cytotoxicity, and the contents of collagen type Ⅰ (COL-Ⅰ) and osteocalcin (OCN) were rising. Meanwhile, the alkaline phosphatase (ALP) activity and mineralized nodules were enhanced. These findings demonstrated that ACP could induce the proliferation, differentiation and mineralization of osteoblasts in vitro. This work provided a certain experimental basis for the developing and utilization of polyphenols from Areca nut seeds.


Asunto(s)
Areca , Polifenoles , Polifenoles/farmacología , Nueces , Ultrasonido , Semillas
17.
Food Chem ; 402: 134328, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36303375

RESUMEN

Glycolipids may be potential materials to improve the instability of liposomes during storage and consumption. Curcumin-loaded liposomes with high stability were successfully prepared by glycolipids and phospholipids extracted from tilapia. The physicochemical properties analysed showed that glycolipids enhanced the surface charge of liposomes and the encapsulation ability of curcumin. The enhanced affinity of liposomes for curcumin was attributed to the stronger interaction between the head group of glycolipids and curcumin through hydrogen bonding. As predicted, glycolipids improved the storage stability of liposomes, and the thermal stability of curcumin increased from 35.95% to 54.13%. Moreover, glycolipids could resist the degradation of liposomes in the gastrointestinal tract, reducing the encapsulation efficiency changes of curcumin from 60.67% to 43.63%. Simultaneously, the liposomes formed by glycolipids could more effectively protect nerve cells from oxidative damage. Therefore, the substitution of phospholipids with glycolipids is an effective strategy to improve the stability and bioactivity of liposomes.


Asunto(s)
Curcumina , Liposomas , Liposomas/química , Fosfolípidos/química , Glucolípidos/química , Curcumina/química , Estabilidad de Medicamentos
18.
Int J Biol Macromol ; 253(Pt 2): 126731, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37678675

RESUMEN

This study investigated the effects of the interaction between liposomes and myofibrillar protein (MP) on tilapia surimi. The strong interaction between liposomes and MP was primarily mediated through hydrogen bonding and hydrophobic interaction. Liposomes caused the unfolding of MP structure, resulting in the decrease of α-helix content and transformation of spatial structure. Notably, the appropriate ratio of liposomes improved the gel properties of tilapia surimi. The water distribution, microstructure, and texture characteristics further confirmed that liposomes strengthened the structure of surimi gel through non-covalent bonds. However, excessive liposomes (1.0 %) weakened gel characteristics and texture. Moreover, the proper ratio of liposomes enhanced the stability of surimi gels during digestion, reducing protein digestibility from 66.0 % to 54.8 %. Curcumin-loaded liposomes in gel matrix notably delayed digestion and improved bioavailability. This delay in digestion was attributed to the ability of liposomes to decrease the interaction between MP and digestive enzymes. This study provides new insight into the application of liposomes in protein-rich food matrixes.


Asunto(s)
Proteínas de Peces , Tilapia , Animales , Proteínas de Peces/química , Liposomas , Manipulación de Alimentos/métodos , Geles/química , Conformación Proteica en Hélice alfa
19.
Front Nutr ; 10: 1201106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404857

RESUMEN

This study aimed to prepare the pre-gelatinized banana flours and compare the effects of four physical treatment methods (autoclaving, microwave, ultrasound, and heat-moisture) on the digestive and structural characteristics of unripe and inferior banana flours. After the four physical treatments, the resistant starch (RS) content values of unripe and inferior banana flours were decreased from 96.85% (RS2) to 28.99-48.37% (RS2 + RS3), while C∞ and k values were increased from 5.90% and 0.039 min-1 to 56.22-74.58% and 0.040-0.059 min-1, respectively. The gelatinization enthalpy (ΔHg) and I1047/1022 ratio (short-range ordered crystalline structures) were decreased from 15.19 J/g and 1.0139 to 12.01-13.72 J/g, 0.9275-0.9811, respectively. The relative crystallinity decreased from 36.25% to 21.69-26.30%, and the XRD patterns of ultrasound (UT) and heat-moisture (HMT) treatment flours maintained the C-type, but those samples pre-gelatinized by autoclave (AT) and microwave (MT) treatment were changed to C + V-type, and heat-moisture (HMT) treatment was changed to A-type. The surface of pre-gelatinized samples was rough, and MT and HMT showed large amorphous holes. The above changes in structure further confirmed the results of digestibility. According to the experimental results, UT was more suitable for processing unripe and inferior banana flours as UT had a higher RS content and thermal gelatinization temperatures, a lower degree and rate of hydrolysis, and a more crystalline structure. The study can provide a theoretical basis for developing and utilizing unripe and inferior banana flours.

20.
Food Chem ; 403: 134424, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358074

RESUMEN

In this study, surimi products rich in lipids were prepared by using myofibril protein (MP) emulsion gel as carriers. The MP emulsion gel (MP concentration, c = 1.5%, oil fraction, ø = 0.68) was prepared by one-step homogenization. The emulsion gel maintained a high elastic modulus (G') after heating and freezing treatment. Confocal laser scanning microscopy revealed that the structure of the emulsion gel was a hybrid network consisting of polymers of cross-linked MP and aggregated protein-stabilized emulsion (W/O/W multiple structures) droplets. The double emulsification of the emulsion gel and MP stabilized the oil droplets in the surimi product, preventing water and oil from leaching out. The microstructure also showed smaller gaps between MPs with increased porosity, while oil droplets were stably embedded in the surimi gel matrix. Moreover, adding MP emulsion gel significantly reduced the surimi gel strength compared to adding oil directly (p < 0.05).


Asunto(s)
Tilapia , Animales , Emulsiones/química , Geles/química , Miofibrillas/química , Proteínas/análisis , Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA