Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 16(3): e0247172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33730074

RESUMEN

Mechanical responses of nanoporous aluminum samples under shock in different crystallographic orientations (<100>, <111>, <110>, <112> and <130>) are investigated by molecular dynamics simulations. The shape evolution of void during collapse is found to have no relationship with the shock orientation. Void collapse rate and dislocation activities at the void surface are found to strongly dependent on the shock orientation. For a relatively weaker shock, void collapses fastest when shocked along the <100> orientation; while for a relatively stronger shock, void collapses fastest in the <110> orientation. The dislocation nucleation position is strongly depended on the impacting crystallographic orientation. A theory based on resolved shear stress is used to explain which slip planes the earliest-appearing dislocations prefer to nucleate on under different shock orientations.


Asunto(s)
Aluminio/química , Nanopartículas del Metal/química , Estrés Mecánico , Anisotropía , Cristalización/métodos , Cristalografía/métodos , Fenómenos Mecánicos , Simulación de Dinámica Molecular , Nanoporos
2.
PLoS One ; 15(3): e0230028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155196

RESUMEN

The heterogeneous melting kinetics of polycrystalline aluminum is investigated by a theoretical model which represents the overall melting rate as a functional of the Weibull grain-size-distribution. It is found that the melting process is strongly affected by the mean-grain-diameter, but is insensitive to the shape parameter of the Weibull distribution. The temperature-time-transformation (TTT) diagrams are calculated to probe dependence of the characteristic timescale of melting on the overheating temperature and the mean-grain-diameter. The model predicts that the heterogeneous melting time of polycrystalline aluminum exponentially depends on temperature in high temperature range and the exponent constant is an intrinsic material constant independent of the mean-grain-diameter. Comparisons between TTT diagrams of heterogeneous melting and homogenous melting are also provided.


Asunto(s)
Aluminio/química , Transición de Fase , Cinética , Modelos Moleculares , Temperatura de Transición
3.
Nanomaterials (Basel) ; 9(9)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484358

RESUMEN

Understanding the reaction initiation of energetic single crystals under external stimuli is a long-term challenge in the field of high energy density materials. Herewith, we developed an ab initio molecular dynamics method based on the multiscale shock technique (MSST) and reported the reaction initiation mechanism by performing large-scale simulations for the sensitive explosive benzotrifuroxan (BTF), insensitive explosive triaminotrinitrobenzene (TATB), four polymorphs of hexanitrohexaazaisowurtzitane (CL-20) pristine crystals and five novel CL-20 cocrystals. A theoretical indicator, tinitiation, the delay of decomposition reaction under shock, was proposed to characterize the shock sensitivity of energetic single crystal, which was proved to be reliable and satisfactorily consistent with experiments. We found that it was the coupling of heat and pressure that drove the shock reaction, wherein the vibrational spectra, the specific heat capacity, as well as the strength of the trigger bonds were the determinants of the shock sensitivity. The intermolecular hydrogen bonds were found to effectively buffer the system from heating, thereby delaying the decomposition reaction and reducing the shock sensitivity of the energetic single crystal. Theoretical rules for synthesizing novel energetic materials with low shock sensitivity were given. Our work is expected to provide a useful reference for the understanding, certifying and adjusting of the shock sensitivity of novel energetic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA