Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(3): 838-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233469

RESUMEN

Previous studies have shown that excessive alcohol consumption is associated with poor sleep. However, the health risks of light-to-moderate alcohol consumption in relation to sleep traits (e.g., insomnia, snoring, sleep duration and chronotype) remain undefined, and their causality is still unclear in the general population. To identify the association between alcohol consumption and multiple sleep traits using an observational and Mendelian randomization (MR) design. Observational analyses and one-sample MR (linear and nonlinear) were performed using clinical and individual-level genetic data from the UK Biobank (UKB). Two-sample MR was assessed using summary data from genome-wide association studies from the UKB and other external consortia. Phenotype analyses were externally validated using data from the National Health and Nutrition Examination Survey (2017-2018). Data analysis was conducted from January 2022 to October 2022. The association between alcohol consumption and six self-reported sleep traits (short sleep duration, long sleep duration, chronotype, snoring, waking up in the morning, and insomnia) were analysed. This study included 383,357 UKB participants (mean [SD] age, 57.0 [8.0] years; 46% male) who consumed a mean (SD) of 9.0 (10.0) standard drinks (one standard drink equivalent to 14 g of alcohol) per week. In the observational analyses, alcohol consumption was significantly associated with all sleep traits. Light-moderate-heavy alcohol consumption was linearly linked to snoring and the evening chronotype but nonlinearly associated with insomnia, sleep duration, and napping. In linear MR analyses, a 1-SD (14 g) increase in genetically predicted alcohol consumption was associated with a 1.14-fold (95% CI, 1.07-1.22) higher risk of snoring (P < 0.001), a 1.28-fold (95% CI, 1.20-1.37) higher risk of evening chronotype (P < 0.001) and a 1.24-fold (95% CI, 1.13-1.36) higher risk of difficulty waking up in the morning (P < 0.001). Nonlinear MR analyses did not reveal significant results after Bonferroni adjustment. The results of the two-sample MR analyses were consistent with those of the one-sample MR analyses, but with a slightly attenuated overall estimate. Our findings suggest that even low levels of alcohol consumption may affect sleep health, particularly by increasing the risk of snoring and evening chronotypes. The negative effects of alcohol consumption on sleep should be made clear to the public in order to promote public health.


Asunto(s)
Consumo de Bebidas Alcohólicas , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos del Inicio y del Mantenimiento del Sueño , Sueño , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/epidemiología , Masculino , Reino Unido/epidemiología , Femenino , Persona de Mediana Edad , Sueño/genética , Sueño/fisiología , Anciano , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Ronquido/genética , Ronquido/epidemiología , Adulto , Fenotipo , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/epidemiología , Polimorfismo de Nucleótido Simple/genética , Biobanco del Reino Unido
2.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470510

RESUMEN

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Asunto(s)
Experiencias Adversas de la Infancia , Aguas Minerales , Recién Nacido , Humanos , Animales , Porcinos , Silicio/metabolismo , Privación Materna , Mucosa Intestinal/metabolismo , Mamíferos
3.
J Allergy Clin Immunol ; 153(4): 1025-1039, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072196

RESUMEN

BACKGROUND: Ectopic lymphoid tissues (eLTs) and associated follicular helper T (TFH) cells contribute to local immunoglobulin hyperproduction in nasal polyps (NPs). Follicular regulatory T (TFR) cells in secondary lymphoid organs counteract TFH cells and suppress immunoglobulin production; however, the presence and function of TFR cells in eLTs in peripheral diseased tissues remain poorly understood. OBJECTIVE: We sought to investigate the presence, phenotype, and function of TFR cells in NPs. METHODS: The presence, abundance, and phenotype of TFR cells in NPs were examined using single-cell RNA sequencing, immunofluorescence staining, and flow cytometry. Sorted polyp and circulating T-cell subsets were cocultured with autologous circulating naïve B cells, and cytokine and immunoglobulin production were measured by ELISA. RESULTS: TFR cells were primarily localized within eLTs in NPs. TFR cell frequency and TFR cell/TFH cell ratio were decreased in NPs with eLTs compared with NPs without eLTs and control inferior turbinate tissues. TFR cells displayed an overlapping phenotype with TFH cells and FOXP3+ regulatory T cells in NPs. Polyp TFR cells had reduced CTLA-4 expression and decreased capacity to inhibit TFH cell-induced immunoglobulin production compared with their counterpart in blood and tonsils. Blocking CTLA-4 abolished the suppressive effect of TFR cells. Lower vitamin D receptor expression was observed on polyp TFR cells compared with TFR cells in blood and tonsils. Vitamin D treatment upregulated CTLA-4 expression on polyp TFR cells and restored their suppressive function in vitro. CONCLUSIONS: Polyp TFR cells in eLTs have decreased CLTA-4 and vitamin D receptor expression and impaired capacity to suppress TFH cell-induced immunoglobulin production, which can be reversed by vitamin D treatment in vitro.


Asunto(s)
Pólipos Nasales , Estructuras Linfoides Terciarias , Humanos , Linfocitos T Reguladores/patología , Linfocitos T Colaboradores-Inductores/patología , Antígeno CTLA-4/metabolismo , Receptores de Calcitriol/metabolismo , Pólipos Nasales/patología , Estructuras Linfoides Terciarias/patología , Inmunoglobulinas/metabolismo , Vitamina D/metabolismo
4.
Plant Cell Environ ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279510

RESUMEN

Determining the differences in flower hydraulic traits and structural resource allocation among closely related species adapted to low mean annual precipitation (MAP) can provide insight into plant adaptation to arid environments. Here, we measured the maximum flower hydraulic conductance (Kmax-flower), water potential at induction 50% loss of Kmax-flower (P50-flower), flower pressure-volume parameters, dry mass of individual flowers and structural components (vexillum, wings, keels, stamens and sepals) of six Caragana species growing in regions ranging from 110 to 1400 mm MAP. Compared with species from high-MAP environments, those from low-MAP environments presented lower Kmax-flower, more negative P50-flower, osmotic potential at full turgor (πo) and turgor loss points (πtlp), and a greater bulk modulus of elasticity (ε). Consequently, a negative correlation between Kmax-flower (hydraulic efficiency) and P50-flower (hydraulic safety) was observed across Caragana species. Furthermore, the dry masses of individual flowers and structural components (vexillum, wings, keels, stamens and sepals) were greater in the species from the low-MAP environment than in those from the high-MAP environment. These findings suggest that greater flower hydraulic safety and drought tolerance combined with greater structural resource allocation promote drought adaptation in Caragana species to low-MAP environments.

5.
J Exp Bot ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367013

RESUMEN

Ethylene, a plant hormone that significantly influences both plant growth and response to stress, plays a well-established role in stress signaling. However, its impact on stomatal opening and closure during dehydration and rehydration remains relatively unexplored and is still debated. Exogenous ethylene has been proven to induce stomatal closure through a series of signaling pathways, including the accumulation of reactive oxygen species (ROS), subsequent synthesis of nitric oxide (NO) and hydrogen sulfide (H2S), and SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) activation. Thus, it has been suggested that ethylene might function to induce stomatal closure synergistically with abscisic acid (ABA). Furthermore, it has also been shown that increased ethylene can inhibit ABA- and jasmonic acid (JA)-induced stomatal closure, thus hindering drought-induced closure during dehydration. Simultaneously, other stresses, such as chilling, ozone pollution and K+ deficiency, inhibit drought and ABA-induced stomatal closure through an ethylene synthesis dependent way. However, ethylene has been shown to take on an opposing role during rehydration, preventing stomatal opening in the absence of ABA through its own signaling pathway. These findings offer novel insights into the function of ethylene in stomatal regulation during dehydration and rehydration, gaining a better understanding of the mechanisms underlying ethylene-induced stomatal movement in seed plants.

6.
Allergy ; 79(5): 1230-1241, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38403941

RESUMEN

BACKGROUND: Identifying predictive biomarkers for allergen immunotherapy response is crucial for enhancing clinical efficacy. This study aims to identify such biomarkers in patients with allergic rhinitis (AR) undergoing subcutaneous immunotherapy (SCIT) for house dust mite allergy. METHODS: The Tongji (discovery) cohort comprised 72 AR patients who completed 1-year SCIT follow-up. Circulating T and B cell subsets were characterized using multiplexed flow cytometry before SCIT. Serum immunoglobulin levels and combined symptom and medication score (CSMS) were assessed before and after 12-month SCIT. Responders, exhibiting ≥30% CSMS improvement, were identified. The random forest algorithm and logistic regression analysis were used to select biomarkers and establish predictive models for SCIT efficacy in the Tongji cohort, which was validated in another Wisco cohort with 43 AR patients. RESULTS: Positive SCIT response correlated with higher baseline CSMS, allergen-specific IgE (sIgE)/total IgE (tIgE) ratio, and frequencies of Type 2 helper T cells, Type 2 follicular helper T (TFH2) cells, and CD23+ nonswitched memory B (BNSM) and switched memory B (BSM) cells, as well as lower follicular regulatory T (TFR) cell frequency and TFR/TFH2 cell ratio. The random forest algorithm identified sIgE/tIgE ratio, TFR/TFH2 cell ratio, and BNSM frequency as the key biomarkers discriminating responders from nonresponders in the Tongji cohort. Logistic regression analysis confirmed the predictive value of a combination model, including sIgE/tIgE ratio, TFR/TFH2 cell ratio, and CD23+ BSM frequency (AUC = 0.899 in Tongji; validated AUC = 0.893 in Wisco). CONCLUSIONS: A T- and B-cell signature combination efficiently identified SCIT responders before treatment, enabling personalized approaches for AR patients.


Asunto(s)
Biomarcadores , Desensibilización Inmunológica , Pyroglyphidae , Rinitis Alérgica , Humanos , Rinitis Alérgica/terapia , Rinitis Alérgica/inmunología , Masculino , Desensibilización Inmunológica/métodos , Animales , Femenino , Adulto , Pyroglyphidae/inmunología , Resultado del Tratamiento , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Persona de Mediana Edad , Adulto Joven , Alérgenos/inmunología , Alérgenos/administración & dosificación , Antígenos Dermatofagoides/inmunología , Inyecciones Subcutáneas , Adolescente , Pronóstico
7.
Br J Nutr ; 131(8): 1342-1351, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38149470

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/genética , Café , Cafeína , Nicotina/metabolismo , Nicotina/farmacología , Dieta Alta en Grasa/efectos adversos , Fumadores , Hígado/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Aumento de Peso , Metabolismo de los Lípidos , Lípidos/farmacología , Ratones Endogámicos C57BL
8.
Inorg Chem ; 63(30): 14116-14125, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39007761

RESUMEN

Although organic-inorganic hybrid Mn2+ halides have advanced significantly, achieving high stability and narrow-band emission remains enormously challenging owing to the weak ionic nature and soft crystal lattice of the halide structure. To address these issues, we proposed a cationic engineering strategy of long-range cation π···π stacking and C-H···π interactions to simultaneously improve the crystal structural stability and rigidity. Herein, two organic zero-dimensional (0D) manganese halide hybrids of (BACQ)2MnX4 [BACQ = 4-(butylamino)-7-chloroquinolin-1-ium; X = Cl and Br] were synthesized. (BACQ)2MnX4 display strong green-light emissions with the narrowest full width at half-maximum (fwhm) of 39 nm, which is significantly smaller than those of commercial green phosphor ß-SiAlON:Eu2+ and most of reported manganese halides. Detailed Hirshfeld surface analyses demonstrate the rigid environment around the [MnX4]2- units originating from the interactions between [BACQ]+. The rigid crystal structure weakens the electron-phonon coupling and renders narrow fwhm of these manganese halides, which is further confirmed by temperature-dependent emission spectra. Remarkably, (BACQ)2MnX4 realizes outstanding structural and luminescence stabilities in various extreme environments. Benefiting from the excellent performance, these Mn2+ halides are used to assemble light-emitting diodes with a wide color gamut of 105% of the National Television System Committee 1931 standard, showcasing the advanced applications in liquid-crystal-display backlighting.

9.
Inorg Chem ; 63(39): 18146-18153, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39300606

RESUMEN

Although metal halide-based X-ray scintillators have obtained significant development with adjustable radioluminescent spectral range, the red light-emitting scintillator has been sparsely reported and remains a great challenge until now. To remedy this research blank, we investigated the scintillating property of red light-emissive one-dimensional (1D) organic manganese halide of (MBIZ)(MnCl3H2O)·H2O (MBIZ = 2-methyl-1H-benzoimidazolium) with a high PLQY of 71% under UV light excitation. Remarkably, this manganese halide single crystal exhibits a compelling X-ray scintillating property in the red light spectral range with a light yield of 19 600 photons MeV-1 and detection limit of 0.204 µGy/s, which is significantly better than the standard dosage for X-ray diagnostics. Furthermore, this manganese halide also exhibits excellent radiation resistance ability toward long-term continuous irradiation of high-dose X-ray with stable radiophotoluminescence intensity. Benefiting from the abovementioned combined merits, (MBIZ)(MnCl3H2O)·H2O demonstrates high-performance X-ray imaging with an outstanding spatial resolution of 11.1 lpmm-1. As far as we know, this is an infrequent red-emissive X-ray scintillator in metal halide materials, which highlights a successful structural design concept to explore new manganese halides as more desirable scintillators and expand the application field in medical diagnosis.

10.
Heart Lung Circ ; 33(1): 46-54, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065830

RESUMEN

BACKGROUND: Pulsed field ablation (PFA) is a newer ablation energy source with the potential to reduce complications and improve efficacy compared to conventional thermal atrial fibrillation (AF) ablation. This study aimed to present an initial single-centre Australian experience of PFA for AF ablation. METHODS: Initial consecutive patients undergoing PFA for paroxysmal or persistent AF at a single centre were included. Baseline patient characteristics, procedural data and clinical outcomes were collected prospectively at the time of the procedure. Patients were followed up at 3 months and 6-monthly thereafter. RESULTS: In total, 100 PFA procedures were performed in 97 patients under general anaesthesia. All pulmonary veins (403 of 403) were successfully isolated acutely. Median follow-up was 218 days (range, 16-343 days), and the Kaplan-Meier estimate for freedom from atrial arrhythmias at 180 days was 87% (95% confidence interval 79%-95%). Median procedure time was 74 minutes (range, 48-134 minutes). Median fluoroscopy dose-area product was 345 µGym2 (interquartile range, 169-685 µGym2). Two (2%) pseudoaneurysm vascular access complications occurred. There were no cases of thromboembolic complications, stroke, phrenic nerve palsy, pulmonary vein stenosis, atrio-oesophageal fistula, or pericardial tamponade. CONCLUSIONS: Pulsed field ablation can be performed safely and efficiently, with encouraging efficacy in early follow-up. Further data and clinical trials will be required to assess the comparative utility of PFA in contemporary AF ablation practice.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Fibrilación Atrial/cirugía , Australia/epidemiología , Venas Pulmonares/cirugía , Ablación por Catéter/métodos , Resultado del Tratamiento , Recurrencia
11.
BMC Oral Health ; 24(1): 878, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095803

RESUMEN

BACKGROUND: Effective treatments for the alveolar bone defect remain a major concern in dental therapy. The objectives of this study were to develop a fibrin and konjac glucomannan (KGM) composite hydrogel as scaffolds for the osteogenesis of nasal mucosa-derived ectodermal mesenchymal stem cells (EMSCs) for the regeneration of alveolar bone defect, and to investigate the osteogenesis-accelerating effects of black phosphorus nanoparticles (BPNs) embedded in the hydrogels. METHODS: Primary EMSCs were isolated from rat nasal mucosa and used for the alveolar bone recovery. Fibrin and KGM were prepared in different ratios for osteomimetic hydrogel scaffolds, and the optimal ratio was determined by mechanical properties and biocompatibility analysis. Then, the optimal hydrogels were integrated with BPNs to obtain BPNs/fibrin-KGM hydrogels, and the effects on osteogenic EMSCs in vitro were evaluated. To explore the osteogenesis-enhancing effects of hydrogels in vivo, the BPNs/fibrin-KGM scaffolds combined with EMSCs were implanted to a rat model of alveolar bone defect. Micro-computed tomography (CT), histological examination, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were conducted to evaluate the bone morphology and expression of osteogenesis-related genes of the bone regeneration. RESULTS: The addition of KGM improved the mechanical properties and biodegradation characteristics of the fibrin hydrogels. In vitro, the BPNs-containing compound hydrogel was proved to be biocompatible and capable of enhancing the osteogenesis of EMSCs by upregulating the mineralization and the activity of alkaline phosphatase. In vivo, the micro-CT analysis and histological evaluation demonstrated that rats implanted EMSCs-BPNs/fibrin-KGM hydrogels exhibited the best bone reconstruction. And compared to the model group, the expression of osteogenesis genes including osteopontin (Opn, p < 0.0001), osteocalcin (Ocn, p < 0.0001), type collagen (Col , p < 0.0001), bone morphogenetic protein-2 (Bmp2, p < 0.0001), Smad1 (p = 0.0006), and runt-related transcription factor 2 (Runx2, p < 0.0001) were all significantly upregulated. CONCLUSIONS: EMSCs/BPNs-containing fibrin-KGM hydrogels accelerated the recovery of the alveolar bone defect in rats by effectively up-regulating the expression of osteogenesis-related genes, promoting the formation and mineralisation of bone matrix.


Asunto(s)
Regeneración Ósea , Fibrina , Hidrogeles , Mananos , Células Madre Mesenquimatosas , Osteogénesis , Fósforo , Ratas Sprague-Dawley , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Ratas , Mananos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Microtomografía por Rayos X , Nanopartículas , Mucosa Nasal , Proceso Alveolar , Masculino , Proteína Morfogenética Ósea 2 , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteocalcina
12.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4499-4509, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307786

RESUMEN

This study explores the effects and mechanisms of Modified Xiaoyao Powder on the intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease(MAFLD) based on the " gut-liver axis". Sixty male C57BL/6 mice were randomly divided into the normal group, model group, bifidobacterium tetrad tablet group(SQ), and Modified Xiaoyao Powder groups with low,medium and high doses(XL, XM, XH), with 10 mice in each group. All the mice were administrated with a high-fat diet to build the MAFLD model except the normal group and then treated with related drugs for 12 weeks. Body mass, liver wet weight, and liver index were detected. Serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol(TC), triacylglycerol(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), and lipopolysaccharide(LPS)levels were detected using the biochemical kits. The contents of tumor necrosis factor-α(TNF-α) and interleukin(IL-6) in the liver were tested simultaneously. The morphological changes of the liver and intestine were observed using hematoxylin-eosin(HE) staining and oil red O staining. The goblet cells in the ileum were detected by periodic acid Schiff and alcian blue stain(AB-PAS) staining.The expression of zonula occludens-1(ZO-1), recombinant occludin(occludin), and recombinant claudin 1(claudin-1) in ileum and colon were detected by immunohistochemistry and Western blot. The changes of intestinal flora in mice were analyzed by 16S rRNA gene sequencing. The results showed that compared with the normal group, body weight, liver wet weight and liver index in the model group increased. The contents of TC, TG, ALT, AST, LDL-C, and LPS in the serum of the model group increased, while HDL-C decreased. Meanwhile, the contents of TNF-α and IL-6 in liver tissue increased and liver lipid accumulation increased, indicating successful model induction. Compared with the model group, body weight, liver wet weight, and liver index were decreased in XM,XH groups and SQ group. Serum levels of TC, TG, LDL-C, ALT and AST in XM group and SQ group were significantly decreased,and HDL-C levels were increased. The levels of IL-6, TNF-α in liver tissue and serum LPS in the XL, XM groups and SQ group were significantly decreased. The protein expression of claudin-1, occludin and ZO-1 in XL, XM groups and SQ group were increased. The analysis of intestinal flora showed that compared with the model group, Modified Xiaoyao Powder with a medium dose could significantly improve the richness and diversity of intestinal flora in mice. At the phylum level, the Firmicutes/Bacteroidetes(F/B) ratio decreased; at the genus level, Lactobacillus, Brautella, Bacteroides, and Ackermannia increased, while Prevotella, Desulfovibrio and Turicibacter decreased. The main differential species were Odorbacteraceaeae and Peptostreptococcaceae. In conclusion, Modified Xiaoyao Powder could inhibit inflammation, regulate intestinal flora homeostasis, and promote the repair of the intestinal mucosal barrier in mice with MAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polvos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Humanos , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Ocludina/metabolismo , Ocludina/genética , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Triglicéridos/metabolismo
13.
Plant Cell Environ ; 46(8): 2296-2309, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37294176

RESUMEN

While variation in mean annual precipitation (MAP) of the native habitat of a species has been shown to determine the ability of a species to resist a hydraulic decrease during drought, it remains unknown whether these variations in MAP also influence the ability of a species to recover and survive drought. Leaf hydraulic and gas exchange recovery following drought and the underlying mechanisms of these responses in six Caragana species from habitats along a large precipitation gradient were investigated during rehydration in a common garden. The gas exchange of species from arid habitats recovered more rapidly during rehydration after mild, moderate and severe drought stress treatments than species from humid habitats. The recovery of gas exchange was not associated with foliar abscisic acid concentration, but tightly related to the recovery of leaf hydraulic conductance (Kleaf ). The recovery of Kleaf was associated with the loss of Kleaf during dehydration under mild and moderate drought stress, and to leaf xylem embolism formation under severe drought stress. Results pointed to the different ability to recover in gas exchange in six Caragana species post-drought is associated with the MAP of the species in its native habitat.


Asunto(s)
Caragana , Agua , Agua/fisiología , Sequías , Hojas de la Planta/fisiología , Xilema/fisiología
14.
Pharmacol Res ; 187: 106580, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436708

RESUMEN

Stress or stress-induced intestinal disturbances, especially diarrhea, are the main triggers for inflammatory bowel disease and irritable bowel syndrome. Diarrhea and intestinal inflammatory disease afflict patients around the world, and it has become a huge burden on the global health care system. Drinking sodium metasilicate-based alkaline mineral water (SM-based AMW) exerts a potential therapeutic effect in gastrointestinal disorders, including gut inflammation, and diarrhea, but the supportive evidence on animal studies and mechanism involved remain unreported. The maternally separated (MS) piglet (Newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infant. This study aims to determine whether drinking SM-based AMW confers diarrhea resistance in maternally separated (MS) piglets under weaning stress and what the underlying mechanisms are involved. 240 newly weaned piglets were randomly divided into the Control group and the sodium metasilicate pentahydrate (SMP) group. A decreased diarrhea incidence was observed in SMP treatment piglets. The intestine injury and activated stress hormones (COR and ACTH) induced by weaning was alleviated by SM-based AMW. This may be related to the improvement of intestinal microflora structure and function by SMP, especially the increase of s_copri abundance. Meanwhile, SMP maintained the integrity of the duodenal mucus barrier in MS piglets. Importantly, by targeting NF-κB inhibition via the microbiota-gut interaction, SM-based AMW alleviated intestinal inflammation, maintained fluid homeostasis by modulating aquaporins and fluid transporter expression, and enhanced barrier integrity by suppressing MLCK/p-MLC signaling. Therefore, drinking metasilicate-based alkaline mineral water confers diarrhea resistance in MS piglets via the microbiota-gut interaction.


Asunto(s)
Diarrea , Microbioma Gastrointestinal , Aguas Minerales , Silicatos , Animales , Diarrea/terapia , Inflamación/terapia , Aguas Minerales/uso terapéutico , Porcinos , Silicatos/uso terapéutico
15.
Physiol Plant ; 175(2): e13903, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37002824

RESUMEN

Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Peróxido de Hidrógeno , Poliaminas , Estomas de Plantas/fisiología , Reguladores del Crecimiento de las Plantas , Arabidopsis/fisiología
16.
J Nat Prod ; 86(2): 357-367, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36753718

RESUMEN

Bioinformatics analysis of a whole genome sequence coupled with HPLC-DAD analysis revealed that Streptomyces sp. Hu103 has the capacity to produce skyllamycin analogues. A subsequent chemical investigation of this strain yielded four new cinnamoyl-containing cyclopeptides, anulamycins A-D (1-4), two new cinnamoyl-containing linear peptides, anulamycins E and F (5 and 6), and two known cyclopeptides, skyllamycins A (7) and B (8). Their structures including absolute configurations were elucidated by detailed analysis of NMR and HRESIMS/MS spectroscopic data and the advanced Marfey's method. Compounds 1-4 exhibited antibacterial activity comparable to those of skyllamycins A and B.


Asunto(s)
Streptomyces , Streptomyces/química , Lagos , Péptidos Cíclicos/química , Espectroscopía de Resonancia Magnética , Antibacterianos/química , Estructura Molecular
17.
Ecotoxicol Environ Saf ; 264: 115399, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639827

RESUMEN

Physical thickness of low-density polyethylene (LDPE) films might determine the release rate of phthalic acid esters (PAEs) & structural integrity and affect production efficiency. However, this critical issue is still unclear and little reported. Aging effects were evaluated in LDPE films with the thickness of 0.006, 0.008, 0.010 and 0.015 mm in a maize field of irrigation region. The Scanning electron microscope (SEM) results showed that the proportion of damaged area (Dam) to total area of LDPE films was massively lowered with increasing thickness after aging. The highest and lowest Dam was 32.2% and 3.5% in 0.006 and 0.015 mm films respectively. Also, the variations in peak intensity of asymmetric & symmetrical stretching vibrations (ASVI & SSVI) were detected using Fourier transform infrared spectrum (FTIR), indicating that the declines in peak intensity tended to be slower with thickness. Interestingly, the declines in physical integrity were tightly associated with increasing exhalation rate of PAEs. Average releasing rate of PAEs was 38.2%, 31.4%, 31.5% and 19.7% in LDPE films from 0.006 to 0.015 mm respectively. Critically, thicker film mulching can lead to greater soil water storage at plough layer (SWS-PL) and better thermal status, accordingly harvesting higher economic benefit. Therefore, LDPE film thickening may be a solution to reduce environmental risk but improve production efficiency in arid region.


Asunto(s)
Luz , Polietileno , Suelo , Vibración
18.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894605

RESUMEN

The limitations of current medications for treating rheumatoid arthritis (RA) emphasize the urgent need for the development of new drugs. This study aimed to investigate the potential anti-RA mechanism of amygdalin using tandem mass tag (TMT)-based quantitative proteomics technology. First, the anti-RA activity of amygdalin was evaluated in a Complete Freund's adjuvant (CFA)-induced rat model. Then, the roles and importance of proteins in the extracted rat joint tissue were evaluated using TMT-based quantitative proteomics technology. A bioinformatics analysis was used to analyze differentially abundant proteins (DAPs). A proteomics analysis identified 297 DAPs in the amygdalin group compared with the model group, of which 53 upregulated proteins and 51 downregulated proteins showed opposite regulatory trends to the DAPs produced after modeling. According to enrichment analyses of the DAPs, the signaling pathways with a high correlation degree were determined to be the complement and coagulation cascades. Furthermore, western blotting and molecular docking were used to further validate the key node proteins, e.g., complement C1s subcomponent (C1s), component C3 (C3) and kininogen 1 (Kng1). These results suggest that amygdalin may be a promising agent for treating RA by regulating the complement and coagulation cascades.


Asunto(s)
Amigdalina , Artritis Reumatoide , Ratas , Animales , Amigdalina/farmacología , Proteómica/métodos , Simulación del Acoplamiento Molecular , Proteínas del Sistema Complemento , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 231-239, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-36949678

RESUMEN

The incidence of insomnia has been increasing in recent years. In addition, due to the impact of the COVID-19 pandemic, more and more people are experiencing a variety of insomniac problems, including having difficulty in sleep initation, waking up too early, and short sleep duration. Chronic insomnia may seriously affect patients' life and work, increase their risks of developing physical and mental illnesses, and cause crushing social and economic burdens. Sedative-hypnotics, including benzodiazepine agonists, melatonin receptor agonists, orexin receptor antagonists, and antidepressants with hypnotic effects, are widely used to treat most patients suffering from insomnia. However, there is the phenomenon of the non-medical use and abuse of sedative-hypnotic drugs, especially benzodiazepine receptor agonists. The abuse of sedative-hypnotic drugs may lead to mental and physical dependence, cognitive impairment, depression and anxiety, as well as an increased risks of falls and death. Therefore, drug regulatory authorities in China and other countries have issued relevant policies to reinforce regulation. Herein, we reviewed the prevalent use and safety of sedative-hypnotic drugs and proposed suggestions concerning their appropriate use. Both the efficacy and safety of sedative-hypnotic drugs should be carefully considered so that patients suffering from insomnia receive thorough and prompt treatment and the problem of potential abuse of sedative-hypnotic drugs is assessed in an objective and scientific manner. We also hope to provide references for the standardized clinical use of insomnia drugs.


Asunto(s)
COVID-19 , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Pandemias , Hipnóticos y Sedantes/efectos adversos , Sueño
20.
Immunology ; 166(2): 185-196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35274290

RESUMEN

Hepatocellular carcinoma (HCC) is a cancer with extremely high mortality. Epithelial-mesenchymal transition (EMT) may play an important role in the occurrence, invasion and prognosis of HCC; however, its relationship with immunity in HCC has not yet been studied. Therefore, we investigated the diagnostic and prognostic values of EMT and explored its potential connections with tumorigenic immune infiltrates in HCC. We first proposed a quantitative metric of EMT activity, the EMT score. After applying this metric to 20 datasets from the Integrative Molecular Database of Hepatocellular Carcinoma, the Cancer Genome Atlas, and the Gene Expression Omnibus, we explored the ability of the EMT score to stratify across sample types. We then applied the EMT score for survival analysis and to differentiate patients with/without vascular invasion to test its prognostic value. We also collected and calculated data on the abundance of immune cells and immune cell markers in HCC and investigated their correlations with EMT scores. Finally, we synthesized and analyzed 20 datasets and constructed an EMT-gene-immune linkage network. The results showed higher EMT scores in HCC samples than in cirrhotic and normal livers. The cases with higher EMT scores also showed poorer performance in terms of prognostic factors such as vascular invasion and overall survival time. Our research demonstrated a broad correlation between EMT and the tumor immune microenvironment, and we uncovered multiple potential linkers associated with both EMT and immunity. Studying EMT has clinical relevance and high diagnostic and prognostic value for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinogénesis , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Pronóstico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA