RESUMEN
BACKGROUND: Although the appropriate management of condylar process fractures after miniplate or microplate fixation has been described, there has been no comparative analysis of these plating systems. METHODS: A retrospective review of patients who underwent open reduction and internal fixation (ORIF) of condylar head or neck fractures at our institution from January 2000 through August 2010 identified 70 patients. Of these, 38 were treated with microplates and 32 with miniplates. The primary functional and radiographic results were the maximal mouth opening and condylar bone resorption, respectively. The rates of complications, including malocclusion, chin deviation, temporomandibular joint complaints, and facial nerve palsy, were recorded. RESULTS: The maximal mouth opening was larger in the microplate group than in the miniplate group throughout the follow-up period; this difference was statistically significant 12 (P = 0.020), 18 (P = 0.026), and 24 (P = 0.032) months after ORIF. Similarly, the radiographic scores for bone resorption and condyle morphology were significantly better in the microplate group than in the miniplate group throughout the follow-up period [6 (P = 0.011), 12 (P = 0.035), 24 (P = 0.026), and 48 (P = 0.040) months after ORIF]. Moreover, patients who underwent miniplate fixation experienced a significantly higher incidence of temporomandibular joint click than those who underwent microplate fixation (P = 0.014). CONCLUSIONS: Microplates limit dissection, providing excellent fixation for intracapsular condylar head fractures, and also provide adequate rigidity for fixation of condylar neck fractures. Microplate fixation of condylar head and neck fractures yielded excellent functional and radiographic results. The rates of complications after microplate fixation were equal to or less than those in the miniplate group. Prospective studies are needed to confirm these findings.
Asunto(s)
Cóndilo Mandibular/lesiones , Fracturas Mandibulares/cirugía , Adulto , Placas Óseas , Diseño de Equipo , Femenino , Fijación Interna de Fracturas/instrumentación , Humanos , Masculino , Cóndilo Mandibular/diagnóstico por imagen , Fracturas Mandibulares/complicaciones , Fracturas Mandibulares/diagnóstico por imagen , Fracturas Maxilares/complicaciones , Cuidados Posoperatorios , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Previous studies demonstrate that eccrine sweat glands are innervated by both cholinergic and adrenergic nerves. However, it is still unknown whether the secretory coils and ducts of eccrine sweat glands are equally innervated by the sympathetic nerve fibers. To well understand the mechanisms on sweat secretion and reabsorption, the differential innervation of secretory coils and ducts in human eccrine sweat glands was investigated in the study. METHODS: From June 2016 to June 2017, six human skins were fixed, paraffin-embedded, and cut into 5 µm-thick sections, followed by costaining for nerve fiber markers protein gene product 9.5 (PGP 9.5), tyrosine hydroxylase (TH) and vasoactive intestinal peptide (VIP), and eccrine sweat gland markers K7, S100P, and K14 by combining standard immunofluorescence with tyramide signal amplification (IF-TSA). Stained sections were observed under the microscope, photographed, and analyzed. RESULTS: The fluorescent signals of PGP 9.5, TH, and VIP were easily visualized, by IF-TSA, as circular patterns surrounding eccrine sweat glands, but only PGP 9.5 could be observed by standard IF. The IF-TSA method is more sensitivity than standard IF in detecting antigens expressed at low levels. PGP 9.5, TH, and VIP appeared primarily surrounding the secretory coils and sparsely surrounding the sweat ducts. CONCLUSION: Sweat secretion is mainly controlled by autonomic nerves whereas sweat reabsorption is less affected by nerve activity.
Asunto(s)
Glándulas Ecrinas/inervación , Fibras Nerviosas , Glándulas Sudoríparas/inervación , Técnica del Anticuerpo Fluorescente , Humanos , Péptido Intestinal Vasoactivo/análisisRESUMEN
OBJECTIVE: To construct and identify the stable expression system of NIH3T3 fibroblast with eukaryotic expression vector of human transforming growth factor beta3 (pcDNA3.1 (-)/TGFbeta3). So as to investigate the proliferation of NIH3T3 fibroblasts transfected with hTGFbeta3 gene stably. METHODS: The stable transfection of NIH3T3 fibroblasts with recombinant plasmid expressing hTGFbeta3 was established by using LipofectamineTM2000 and G418 selection. The mRNA and protein expression of TGFbeta3 were detected by the RT-PCR and Western blot method, respectively. Microscope and MTT were adopted to examine the proliferation of the stable expression system of fibroblasts with hTGFbeta3. RESULTS: After G418 selection, RT-PCR and Western blot analysis, 7 out of 10 cell lines transfected with pcDNA3.1 (-)/TGFbeta3 expressed with very high level of TGFbeta3, as compared with vector control transfectants that showed no expression, and compared with the other cell lines that expressed relatively low level. The stable transfection of NIH3T3 fibroblasts growth slowed down significantly (P < 0.05). CONCLUSION: The stable expression system of NIH3T3 fibroblast with hTGFbeta3 were constructed successfully. The TGFbeta3 gene could inhibit the proliferation of NIH3T3 fibroblasts in vitro.