Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(10): e56009, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37642636

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Ratones , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células de la Médula Ósea/metabolismo , Homeostasis
2.
J Cell Physiol ; 239(5): e31255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501341

RESUMEN

Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Quimera Dirigida a la Proteólisis , Proteolisis , Animales , Humanos , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Ubiquitina/metabolismo
3.
Molecules ; 29(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474514

RESUMEN

Cell junctions, which are typically associated with dynamic cytoskeletons, are essential for a wide range of cellular activities, including cell migration, cell communication, barrier function and signal transduction. Observing cell junctions in real-time can help us understand the mechanisms by which they regulate these cellular activities. This study examined the binding capacity of a modified tridecapeptide from Connexin 43 (Cx43) to the cell junction protein zonula occludens-1 (ZO-1). The goal was to create a fluorescent peptide that can label cell junctions. A cell-penetrating peptide was linked to the modified tridecapeptide. The heterotrimeric peptide molecule was then synthesized. The binding of the modified tridecapeptide was tested using pulldown and immunoprecipitation assays. The ability of the peptide to label cell junctions was assessed by adding it to fixed or live Caco-2 cells. The testing assays revealed that the Cx43-derived peptide can bind to ZO-1. Additionally, the peptide was able to label cell junctions of fixed cells, although no obvious cell junction labeling was observed clearly in live cells, probably due to the inadequate affinity. These findings suggest that labeling cell junctions using a peptide-based strategy is feasible. Further efforts to improve its affinity are warranted in the future.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Humanos , Conexina 43/química , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Proteínas de la Membrana/metabolismo , Células CACO-2 , Péptidos/metabolismo , Fosfoproteínas/metabolismo
4.
Entropy (Basel) ; 26(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38539729

RESUMEN

Genuine multipartite entanglement is crucial for quantum information and related technologies, but quantifying it has been a long-standing challenge. Most proposed measures do not meet the "genuine" requirement, making them unsuitable for many applications. In this work, we propose a journey toward addressing this issue by introducing an unexpected relation between multipartite entanglement and hypervolume of geometric simplices, leading to a tetrahedron measure of quadripartite entanglement. By comparing the entanglement ranking of two highly entangled four-qubit states, we show that the tetrahedron measure relies on the degree of permutation invariance among parties within the quantum system. We demonstrate potential future applications of our measure in the context of quantum information scrambling within many-body systems.

5.
Phys Rev Lett ; 130(15): 150801, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37115884

RESUMEN

Recently, a proper genuine multipartite entanglement measure has been found for three-qubit pure states [see Xie and Eberly, Phys. Rev. Lett. 127, 040403 (2021)PRLTAO0031-900710.1103/PhysRevLett.127.040403], but capturing useful entanglement measures for mixed states has remained an open challenge. So far, it requires not only a full tomography in experiments, but also huge calculational labor. A leading proposal was made by Gühne, Reimpell, and Werner [Phys. Rev. Lett. 98, 110502 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.110502], who used expectation values of entanglement witnesses to describe a lower bound estimation of entanglement. We provide here an extension that also gives genuine upper bounds of entanglement. This advance requires only the expectation value of any Hermitian operator. Moreover, we identify a class of operators A_{1} that not only give good estimates, but also require a remarkably small number of experimental measurements. In this Letter, we define our approach and illustrate it by estimating entanglement measures for a number of pure and mixed states prepared in our recent experiments.

6.
Inorg Chem ; 62(20): 8033-8042, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37155733

RESUMEN

As a promising cost-effective nanozyme, MoS2 nanosheets (NSs) have been considered as a good candidate for the enzyme-like catalysis. However, their catalytic activity is still restricted by the insufficient active sites and poor conductivity, and thus, the comprehensive performances are still unsatisfactory. To address these issues, herein, we design and fabricate an intelligent tubular nanostructure of hierarchical hollow nanotubes, which are assembled by NiSx/MoS2 NSs encapsulated into N-doped carbon microtubes (NiSx/MoS2@NCMTs). The N-doped carbon microtubes (NCMTs) serve as a conductive skeleton, integrating with NiSx/MoS2 NSs and ensuring their well-distribution, thereby maximally exposing more active sites. Additionally, the tube-like structure is favorable for increasing the mass transfusion to ensure their excellent catalytic performance. Profiting from their component and structural advantages, the obtained NiSx/MoS2@NCMTs exhibit a surprisingly enhanced enzyme-like activity. Based on these, a facile colorimetric sensing platform to detect H2O2 and GSH has been developed. This proposed approach can be expected to synthesize a series of tubular heterostructured MoS2-based composites, which will be widely applied in catalysis, energy storage, disease diagnosis, etc.

7.
Postgrad Med J ; 99(1175): 993-999, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37302123

RESUMEN

BACKGROUND: Observational studies have shown an association between age at menarche (AAM) and the risk of gynecological diseases. However, the causality cannot be determined due to residual confounding. METHODS: We conducted a Mendelian randomization (MR) study to evaluate the causal effect of AAM on several gynecological diseases, including endometriosis, female infertility, pre-eclampsia or eclampsia, uterine fibroids, breast cancer, ovarian cancer, and endometrial cancer. Single nucleotide polymorphisms were used as genetic instruments. The inverse variance weighted method was used as the primary approach and several other MR models were conducted for comparison. Cochran's Q test, Egger's intercept test, and leave-one-out analysis were conducted for sensitivity analysis. Radial MR analysis was conducted when detecting the existence of heterogeneity. RESULTS: After Bonferroni correction and thorough sensitivity analysis, we observed a robust causal effect of AAM on endometrial cancer (odds ratio: 0.80; 95% confidence interval: 0.72-0.89; P = 4.61 × 10-5) and breast cancer (odds ratio: 0.94; 95% confidence interval: 0.90-0.98; P = .003). Sensitivity analysis found little evidence of horizontal pleiotropy. The inverse variance weighted method also detected weak evidence of associations of AAM with endometriosis and pre-eclampsia or eclampsia. CONCLUSIONS: This MR study demonstrated a causal effect of AAM on gynecological diseases, especially for breast cancer and endometrial cancer, which indicates AAM might be a promising index to use for disease screening and prevention in clinical practice. Key messages What is already known on this topic - Observational studies have reported associations between age at menarche (AAM) and a variety of gynecological diseases but the causality has not been determined. What this study adds - This Mendelian randomization study demonstrated that AAM causally affects the risk of breast cancer and endometrial cancer. How this study might affect research, practice, or policy - The findings of our study imply that AAM could be a candidate marker for early screening of populations at higher risk of breast cancer and endometrial cancer.


Asunto(s)
Neoplasias de la Mama , Eclampsia , Neoplasias Endometriales , Endometriosis , Preeclampsia , Embarazo , Humanos , Femenino , Menarquia/genética , Análisis de la Aleatorización Mendeliana , Preeclampsia/epidemiología , Preeclampsia/genética , Evaluación de Resultado en la Atención de Salud , Estudio de Asociación del Genoma Completo
8.
J Cell Physiol ; 237(11): 3975-3983, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36000703

RESUMEN

Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.


Asunto(s)
Cilios , Ciliopatías , Animales , Humanos , Cilios/metabolismo , Actinas/metabolismo , Citoesqueleto , Ciliopatías/genética , Ciliopatías/metabolismo , Microtúbulos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Mamíferos
9.
Anal Chem ; 94(32): 11168-11174, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35917443

RESUMEN

In vitro assays using reconstituted microtubules have provided molecular insights into the principles of microtubule dynamics and the roles of microtubule-associated proteins. Emerging questions that further uncover the complexity in microtubule dynamics, especially those on tubulin isotypes and post-translational modifications, raise new technical challenges on how to visualize microtubules composed of tubulin purified from limited sources, primarily due to the low efficiency of the conventional tubulin labeling protocol. Here, we develop a peptide probe, termed TUBright, that labels in vitro reconstituted microtubules. TUBright, when coupled with different fluorescent dyes, provides flexible labeling of microtubules with a high signal-to-noise ratio. TUBright does not interfere with the dynamic behaviors of microtubules and microtubule-associated proteins. Therefore, TUBright is a useful tool for imaging microtubules, making it feasible to use tubulin from limited sources for answering many open questions on microtubule dynamics.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Péptidos/análisis , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/análisis
10.
J Biol Chem ; 295(42): 14343-14351, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32796032

RESUMEN

Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor that targets the internalized virus-antibody complex to the proteasome for degradation. However, the precise mechanism regulating TRIM21 activity is unknown. Here we show that TRIM21 is a substrate of histone deacetylase 6 (HDAC6) and that its function is regulated by acetylation. HDAC6 interacts with TRIM21 through its PRYSPRY motif and deacetylates TRIM21 at lysine 385 and lysine 387, thus promoting its homodimerization. Inhibiting HDAC6 activity increases TRIM21 acetylation, and hyperacetylation blocks TRIM21 dimerization and ubiquitination, preventing its binding to the virus-antibody complex and its degradation via the ubiquitin-proteasome pathway. HDAC6 depletion or inhibition increases virus accumulation in cells, indicative of an impaired capacity for antibody-dependent intracellular neutralization of viruses, whereas TRIM21 acetylation-deficient K385/387R mutant rescues HDAC6 depletion-caused ADIN impairment. These findings provide evidence for HDAC6 as a novel regulator of TRIM21-mediated intracellular innate immunity.


Asunto(s)
Adenoviridae/inmunología , Anticuerpos Neutralizantes/inmunología , Histona Desacetilasa 6/metabolismo , Ribonucleoproteínas/metabolismo , Acetilación , Secuencias de Aminoácidos , Animales , Complejo Antígeno-Anticuerpo , Línea Celular , Dimerización , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/genética , Humanos , Inmunidad Innata , Ratones , Mutagénesis Sitio-Dirigida , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ribonucleoproteínas/química , Ubiquitinación
11.
Phys Rev Lett ; 127(4): 040403, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355929

RESUMEN

Although genuine multipartite entanglement has already been generated and verified by experiments, most of the existing measures cannot detect genuine entanglement faithfully. In this work, by exploiting for the first time a previously overlooked constraint for the distribution of entanglement in three-qubit systems, we reveal a new genuine tripartite entanglement measure, which is related to the area of a so-called concurrence triangle. It is compared with other existing measures and is found superior to previous attempts for different reasons. A specific example is illustrated to show that two tripartite entanglement measures can be inequivalent due to the high dimensionality of the Hilbert space. The properties of the triangle measure make it a candidate in potential quantum tasks and available to be used in any multiparty entanglement problems.

12.
Exp Cell Res ; 387(1): 111776, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838060

RESUMEN

Microtubule-binding proteins provide an alternative and vital pathway to the functional diversity of microtubules. Considerable work is still required to understand the complexities of microtubule-associated cellular processes and to identify novel microtubule-binding proteins. In this study, we identify Bcl2-associated athanogene cochaperone 6 (BAG6) as a novel microtubule-binding protein and reveal that it is crucial for primary ciliogenesis. By immunofluorescence we show that BAG6 largely colocalizes with intracellular microtubules and by co-immunoprecipitation we demonstated that it can interact with α-tubulin. Additionally, both the UBL and BAG domains of BAG6 are indispensable for its interaction with α-tubulin. Moreover, the assembly of primary cilia in RPE-1 cells is significantly inhibited upon the depletion of BAG6. Notably, BAG6 inhibition leads to an abnormal G0/G1 transition during the cell cycle. In addition, BAG6 colocalizes and interactes with the centrosomal protein γ-tubulin, suggesting that BAG6 might regulate primary ciliogenesis through its action in centrosomal function. Collectively, our findings suggest that BAG6 is a novel microtubule-bindng protein crucial for primary ciliogenesis.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Fase G1/fisiología , Células HEK293 , Células HeLa , Humanos , Unión Proteica/fisiología , Fase de Descanso del Ciclo Celular/fisiología
13.
Exp Cell Res ; 384(1): 111618, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31505167

RESUMEN

End binding protein 1 (EB1) is a key regulator of microtubule dynamics that orchestrates hierarchical interaction networks at microtubule plus ends to control proper cell division. EB1 activity is known to be regulated by serine/threonine phosphorylation; however, how tyrosine phosphorylation affects EB1 activity remains poorly understood. In this study, we mapped the tyrosine phosphorylation pattern of EB1 in synchronized cells and identified two tyrosine phosphorylation sites (Y217 and Y247) in mitotic cells. Using phospho-deficient (Y/F) and phospho-mimic (Y/D) mutants, we revealed that Y247, but not Y217, is critical for astral microtubule stability. The Y247D mutant contributed to increased spindle angle, indicative of defects in spindle orientation. Time-lapse microscopy revealed that the Y247D mutant significantly delayed mitotic progression by increasing the duration times of prometaphase and metaphase. Structural analysis suggests that Y247 mutants lead to instability of the hydrophobic cavity in the EB homology (EBH) domain, thereby affecting its interactions with p150glued, a protein essential for Gαi/LGN/NuMA complex capture. These findings uncover a crucial role for EB1 phosphorylation in the regulation of mitotic spindle orientation and cell division.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Fosforilación/fisiología , Línea Celular Tumoral , Complejo Dinactina/metabolismo , Células HeLa , Humanos , Metafase/fisiología , Microtúbulos/metabolismo , Microtúbulos/fisiología , Unión Proteica/fisiología , Huso Acromático/metabolismo , Huso Acromático/fisiología
14.
J Cell Physiol ; 234(11): 19833-19841, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344990

RESUMEN

Mammalian erythrocytes are highly specialized cells that have adapted to lose their nuclei and cellular components during maturation to ensure oxygen delivery. Nuclear extrusion, the most critical event during erythropoiesis, represents an extreme case of asymmetric partitioning that requires a dramatic reorganization of the cytoskeleton. However, the precise role of the microtubule cytoskeleton in the enucleation process remains controversial. In this study, we show that microtubule reorganization is critical for microtubule clearance and nuclear extrusion during erythropoiesis. Using a rodent anemia model, we found that microtubules were present in erythroblasts and reticulocytes but were undetectable in erythrocytes. Further analysis demonstrated that microtubules became disordered in reticulocytes and revealed that microtubule stabilization was critical for tubulin degradation. Disruption of microtubule dynamics using the microtubule-stabilizing agent paclitaxel or the microtubule-destabilizing agent nocodazole did not affect the efficiency of erythroblast enucleation. However, paclitaxel treatment resulted in the retention of tubulin in mature erythrocytes, and nocodazole treatment led to a defect in pyrenocyte morphology. Taken together, our data reveals a critical role for microtubules in erythrocyte development. Our findings also implicate the disruption of microtubule dynamics in the pathogenesis of anemia-associated diseases, providing new insight into the pathogenesis of the microtubule-targeted agent-associated anemia frequently observed during cancer chemotherapy.


Asunto(s)
Núcleo Celular/metabolismo , Eritropoyesis , Microtúbulos/metabolismo , Animales , Autofagia , Diferenciación Celular , Ratones Endogámicos C57BL , Modelos Biológicos , Polimerizacion , Proteolisis , Reticulocitos/citología , Reticulocitos/metabolismo , Tubulina (Proteína)/metabolismo
15.
J Cell Physiol ; 234(6): 9723-9732, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362575

RESUMEN

Successful treatment of pancreatic cancer, which has the highest mortality rate among all types of malignancies, has challenged oncologists for decades, and early detection would undoubtedly increase favorable patient outcomes. The identification of proteins involved in pancreatic cancer progression could lead to biomarkers for early detection of this disease. This study identifies one potential candidate, cylindromatosis (CYLD), a deubiquitinase and microtubule-binding protein that plays a suppressive role in pancreatic cancer development. In pancreatic cancer samples, downregulation of CYLD expression resulted from a loss in the copy number of the CYLD gene; additionally, reduced expression of CYLD negatively correlated with the clinicopathological parameters. Further study demonstrated that CYLD deficiency promoted colony formation in vitro and pancreatic cancer growth in vivo. Mechanistic studies revealed that CYLD is essential for spindle orientation and properly oriented cell division; CYLD deficiency resulted in a substantial increase in chromosome missegregation. Taken together, these data indicate a critical role for CYLD in suppressing pancreatic tumorigenesis, implicating its potential as a biomarker for early detection of pancreatic cancer and a prognostic indicator of patient outcomes.


Asunto(s)
Carcinogénesis/patología , Enzima Desubiquitinante CYLD/deficiencia , Mitosis , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Segregación Cromosómica , Enzima Desubiquitinante CYLD/metabolismo , Dosificación de Gen , Humanos , Ratones , Neoplasias Pancreáticas/genética , Huso Acromático/metabolismo , Ensayo de Tumor de Célula Madre
16.
J Cell Physiol ; 233(3): 2581-2589, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28777446

RESUMEN

Microtubule plus ends undergo highly dynamic modifications to regulate different aspects of cellular activities. Most microtubule plus-end tracking proteins (+TIPs) are recruited to the microtubule ends by the master loading factor, end-binding protein 1 (EB1). These proteins coordinately regulate microtubule dynamics and cellular plasticity. Acetylation is known to modulate EB1 function; however, the molecular details of EB1 acetylation remain largely unclear. We mapped the acetylation pattern of EB1 and identified several previously uncharacterized sites of EB1 acetylation. We examined the effects of lysine-212 (K212) acetylation and found that acetylation of this site accelerates autophagy-mediated EB1 degradation. By time-lapse microscopy, we found that the acetylation-deficient K212R mutant increased the percentage of fast-growing and long-lived microtubules. Although K212 acetylation did not affect microtubule stability in vitro and the association of EB1 with microtubules, the K212R mutant significantly promoted microtubule regrowth in cells. Coimmunoprecipitation assays further revealed that the K212 site was critical for the recruitment of different +TIP cargoes. These data thus uncover a critical role for a novel EB1 acetylation site in regulating the dynamic structure of microtubules.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia , Células HEK293 , Células HeLa , Humanos , Lisina , Proteínas Asociadas a Microtúbulos/genética , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , Factores de Tiempo
17.
Med Res Rev ; 36(2): 300-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26332739

RESUMEN

Microtubules, tirelessly animated and highly dynamic structures, are vital for most cellular processes and their intricacies are still being revealed even after a century since their discovery. The importance of microtubules as chemotherapeutic targets cannot be overstated, and their clinical role is unlikely to abate in the near future. Indeed, improved understanding of microtubule biology could herald a new epoch of anticancer drug design by permitting fine-tuning of microtubule-targeting agents, the clinical utility of which is presently often limited by primary or acquired resistance. Paclitaxel, one such agent belonging to the taxane family, has proven a resoundingly successful treatment for many cancer patients; however, for too many others with paclitaxel-refractory tumors, the drug has offered nothing but side effects. Accumulating evidence suggests that microtubule-binding proteins (MBPs) can regulate paclitaxel sensitivity in a wide range of cancer types. Improved understanding of how these proteins can be assayed to predict treatment responses or manipulated pharmacologically to improve clinical outcomes could transform modern chemotherapy and is urgently awaited.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Microtúbulos/metabolismo , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Paclitaxel/farmacología , Medicina de Precisión
18.
Biochem Biophys Res Commun ; 447(3): 465-70, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24732354

RESUMEN

Eg5 is a mitotic kinesin that plays a crucial role in the formation of bipolar mitotic spindles, by hydrolyzing ATP to push apart anti-parallel microtubules. Dimethylenastron is potent specific small molecule inhibitor of Eg5. The mechanism by which dimethylenastron inhibits Eg5 function remains unclear. By comparing with enastron, here we report that dimethylenastron prevents the growth of pancreatic and lung cancer cells more effectively, by halting mitotic progression and triggering apoptosis. We analyze their interactions with ADP-bound Eg5 crystal structure, and find that dimethylenastron binds Eg5 motor domain with higher affinity. In addition, dimethylenastron allosterically blocks the conformational change of the "sandwich"-like ADP-binding pocket more effectively. We subsequently use biochemical approach to reveal that dimethylenastron slows ADP release more significantly than enastron. These data thus provide biological, structural and mechanistic insights into the potent inhibitory activity of dimethylenastron.


Asunto(s)
Adenosina Difosfato/metabolismo , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Cinesinas/antagonistas & inhibidores , Quinazolinas/farmacología , Tionas/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Cinesinas/química , Mitosis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Estructura Terciaria de Proteína
19.
Adv Sci (Weinh) ; 11(25): e2400569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666385

RESUMEN

The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.


Asunto(s)
Cilios , Homeostasis , Cinesinas , Retina , Cinesinas/metabolismo , Cinesinas/genética , Animales , Ratones , Homeostasis/fisiología , Cilios/metabolismo , Cilios/genética , Retina/metabolismo , Modelos Animales de Enfermedad , Ubiquitinación , Humanos , Degeneración Retiniana/metabolismo , Degeneración Retiniana/genética
20.
Sci Bull (Beijing) ; 69(13): 2122-2135, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38811338

RESUMEN

Targeting oncogenic mutant p53 represents an attractive strategy for cancer treatment due to the high frequency of gain-of-function mutations and ectopic expression in various cancer types. Despite extensive efforts, the absence of a druggable active site for small molecules has rendered these mutants therapeutically non-actionable. Here we develop a selective and effective proteolysis-targeting chimera (PROTAC) for p53-R175H, a common hotspot mutant with dominant-negative and oncogenic activity. Using a novel iterative molecular docking-guided post-SELEX (systematic evolution of ligands by exponential enrichment) approach, we rationally engineer a high-performance DNA aptamer with improved affinity and specificity for p53-R175H. Leveraging this resulting aptamer as a binder for PROTACs, we successfully developed a selective p53-R175H degrader, named dp53m. dp53m induces the ubiquitin-proteasome-dependent degradation of p53-R175H while sparing wildtype p53. Importantly, dp53m demonstrates significant antitumor efficacy in p53-R175H-driven cancer cells both in vitro and in vivo, without toxicity. Moreover, dp53m significantly and synergistically improves the sensitivity of these cells to cisplatin, a commonly used chemotherapy drug. These findings provide evidence of the potential therapeutic value of dp53m in p53-R175H-driven cancers.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Proteolisis , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Aptámeros de Nucleótidos/farmacología , Proteolisis/efectos de los fármacos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Técnica SELEX de Producción de Aptámeros , Cisplatino/farmacología , Cisplatino/uso terapéutico , Simulación del Acoplamiento Molecular , Mutación , Ensayos Antitumor por Modelo de Xenoinjerto , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA