RESUMEN
BACKGROUND: Mangroves possess substantial ecological, social, and economic functions in tropical and subtropical coastal wetlands. Kandelia obovata is the most cold-resistance species among mangrove plants, with a widespread distribution in China that ranges from Sanya (18° 12' N) to Wenzhou (28° 20' N). Here, we explored the temporal variations in physiological status and transcriptome profiling of K. obovata under natural frost conditions at ~ 32oN, as well as the positive role of exogenous abscisic acid (ABA) in cold resistance. RESULTS: The soluble sugar (SS) and proline (Pro) functioned under freezing stress, of which SS was more important for K. obovata. Consistently, up-regulated DEGs responding to low temperature were significantly annotated to glycometabolism, such as starch and sucrose metabolism and amino sugar and nucleotide sugar metabolism. Notably, the top 2 pathways of KEGG enrichment were phenylpropanoid biosynthesis and flavonoid biosynthesis. For the antioxidant system, POD in conjunction with CAT removed hydrogen peroxide, and CAT appeared to be more important. The up-regulated DEGs responding to low temperature and ABA were also found to be enriched in arginine and proline metabolism, starch and sucrose metabolism, and peroxisome. Moreover, ABA triggered the expression of P5CS and P5CR, but inhibited the ProDH expression, which might contribute to Pro accumulation. Interestingly, there was no significant change in malondialdehyde (MDA) content during the cold event (P > 0.05), suggesting foliar application of ABA effectively alleviated the adverse effects of freezing stress on K. obovata by activating the antioxidant enzyme activity and increasing osmolytes accumulation, such as Pro, and the outcome was proportional to ABA concentration. CONCLUSIONS: This study deepened our understanding of the physiological characters and molecular mechanisms underlying the response of K. obovata to natural frost conditions and exogenous ABA at the field level, which could provide a sound theoretical foundation for expanding mangroves plantations in higher latitudes, as well as the development coastal landscape.
Asunto(s)
Rhizophoraceae , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Congelación , Prolina/metabolismo , Almidón/metabolismo , Sacarosa/metabolismoRESUMEN
Flooding stress on mangroves is growing continually with rising sea level. In this study, the physiology and transcriptome of the mangrove species Kandelia obovata under flooding stress were analyzed. With increasing inundation time, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), soluble sugar (SS), soluble protein (SP), and proline (Pro) content declined, while peroxidase (POD) and ascorbate peroxidase (APX) activity rose significantly. According to the KEGG pathway enrichment analysis, upregulated differentially expressed genes (DEGs) were enriched in the plant hormone signaling pathway. Furthermore, MYB44 and MYB108 genes from the MYB transcription factor family and RAP2.12, DREB2B, and ERF4 genes from the AP2/ERF family were up-regulated under flooding conditions. A strong correlation was established between the expression levels of 12 DEGs under flooding stress and RNA sequencing data and was verified by qRT-PCR. These results provide new insights into the molecular mechanism of K. obovata in response to flooding stress.