Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2400568121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857392

RESUMEN

Nano ferroelectrics holds the potential application promise in information storage, electro-mechanical transformation, and novel catalysts but encounters a huge challenge of size limitation and manufacture complexity on the creation of long-range ferroelectric ordering. Herein, as an incipient ferroelectric, nanosized SrTiO3 was indued with polarized ordering at room temperature from the nonpolar cubic structure, driven by the intrinsic three-dimensional (3D) tensile strain. The ferroelectric behavior can be confirmed by piezoelectric force microscopy and the ferroelectric TO1 soft mode was verified with the temperature stability to 500 K. Its structural origin comes from the off-center shift of Ti atom to oxygen octahedron and forms the ultrafine head-to-tail connected 90° nanodomains about 2 to 3 nm, resulting in an overall spontaneous polarization toward the short edges of nanoparticles. According to the density functional theory calculations and phase-field simulations, the 3D strain-related dipole displacement transformed from [001] to [111] and segmentation effect on the ferroelectric domain were further proved. The topological ferroelectric order induced by intrinsic 3D tensile strain shows a unique approach to get over the nanosized limitation in nanodevices and construct the strong strain-polarization coupling, paving the way for the design of high-performance and free-assembled ferroelectric devices.

2.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743874

RESUMEN

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

3.
J Am Chem Soc ; 146(1): 1071-1080, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157430

RESUMEN

Strong metal-support interaction (SMSI) has been extensively studied in heterogeneous catalysis because of its significance in stabilizing active metals and tuning catalytic performance, but the origin of SMSI is not fully revealed. Herein, by using Pt/CeO2 as a model catalyst, we report an embedding structure at the interface between Pt and (110) plane of CeO2, where Pt clusters (∼1.6 nm) are embedded into the lattice of ceria within 3-4 atomic layers. In contrast, this phenomenon is absent in the CeO2(100) support. This unique geometric structure, as an effective motivator, triggers more significant electron transfer from Pt clusters to CeO2(110) support accompanied by the formation of interfacial structure (Ptδ+-Ov-Ce3+), which plays a crucial role in stabilizing Pt nanoclusters. A comprehensive investigation based on experimental studies and theoretical calculations substantiates that the interfacial sites serve as the intrinsic active center toward water-gas shift reaction (WGSR), featuring a moderate strength CO activation adsorption and largely decreased energy barrier of H2O dissociation, accounting for the prominent catalytic activity of Pt/CeO2(110) (a reaction rate of 15.76 molCO gPt-1 h-1 and a turnover frequency value of 2.19 s-1 at 250 °C). In addition, the Pt/CeO2(110) catalyst shows a prominent durability within a 120 h time-on-stream test, far outperforming the Pt/CeO2(100) one, which demonstrates the advantages of this embedding structure for improving catalyst stability.

4.
J Am Chem Soc ; 146(10): 6530-6535, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38410847

RESUMEN

Thermal quenching (TQ) has been naturally entangling with luminescence since its discovery, and lattice vibration, which is characterized as multiphonon relaxation (MPR), plays a critical role. Considering that MPR may be suppressed under exterior pressure, we have designed a core/shell upconversion luminescence (UCL) system of α-NaYF4:Yb/Ln@ScF3 (Ln = Ho, Er, and Tm) with positive/negative thermal expansion behavior so that positive thermal expansion of the core will be restrained by negative thermal expansion of the shell when heated. This imposed pressure on the crystal lattice of the core suppresses MPR, reduces the amount of energy depleted by TQ, and eventually saves more energy for luminescing, so that anti-TQ or even thermally enhanced UCL is obtained.

5.
Chem Rev ; 122(9): 8438-8486, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35258938

RESUMEN

Negative thermal expansion (NTE), referring to the lattice contraction upon heating, has been an attractive topic of solid-state chemistry and functional materials. The response of a lattice to the temperature field is deeply rooted in its structural features and is inseparable from the physical properties. For the past 30 years, great efforts have been made to search for NTE compounds and control NTE performance. The demands of different applications give rise to the prominent development of new NTE systems covering multifarious chemical substances and many preparation routes. Even so, the intelligent design of NTE structures and efficient tailoring for lattice thermal expansion are still challenging. However, the diverse chemical routes to synthesize target compounds with featured structures provide a large number of strategies to achieve the desirable NTE behaviors with related properties. The chemical diversity is reflected in the wide regulating scale, flexible ways of introduction, and abundant structure-function insights. It inspires the rapid growth of new functional NTE compounds and understanding of the physical origins. In this review, we provide a systematic overview of the recent progress of chemical diversity in the tailoring of NTE. The efficient control of lattice and deep structural deciphering are carefully discussed. This comprehensive summary and perspective for chemical diversity are helpful to promote the creation of functional zero-thermal-expansion (ZTE) compounds and the practical utilization of NTE.

6.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36729943

RESUMEN

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

7.
Angew Chem Int Ed Engl ; 63(13): e202401302, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38353130

RESUMEN

Negative thermal expansion (NTE) is crucial for controlling the thermomechanical properties of functional materials, albeit being relatively rare. This study reports a giant NTE (αV ∼-9.2 ⋅ 10-5  K-1 , 100-200 K; αV ∼-3.7 ⋅ 10-5  K-1 , 200-650 K) observed in NaB(CN)4 , showcasing interesting ultralight properties. A comprehensive investigation involving synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations has been conducted to explore the thermal expansion mechanism. The findings indicate that the low-frequency phonon modes play a primary role in NTE, and non-rigid vibration modes with most negative Grüneisen parameters are the key contributing factor to the giant NTE observed in NaB(CN)4 . This work presents a new material with giant NTE and ultralight mass density, providing insights for the understanding and design of novel NTE materials.

8.
J Am Chem Soc ; 145(32): 17856-17862, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530501

RESUMEN

Metals typically crystallize in highly symmetric structures due to their nondirectional and nonsaturated metallic bonds. Here, we report that terbium metal in its ferromagnetic state adopts an unusual low-symmetry orthorhombic structure with a Cmcm space group. A similar structure has been previously observed only in a few actinide metals with bonding 5f electrons at ambient pressure, such as uranium, neptunium, and plutonium, but with different nearest coordination numbers and bond-length variations. The Tb atom occupies the 4c site (0, ∼0.1661, 1/4), building up -[Tb-Tb]- layers stacking along the b-axis. Our first-principles many-body calculations of the crystal field splitting in the correlated Tb 4f-shell demonstrate that the Cmcm structure for ferromagnetic terbium is stabilized by magneto-elastic forces due to a secondary order of quadrupolar moments in the ferromagnetic state. These findings are significant for further understanding of the nature of terbium, including its electron structure, energy bands, phonons, and magnetism.

9.
J Am Chem Soc ; 145(49): 26728-26735, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38015199

RESUMEN

Deciphering the three-dimensional (3D) insight into nanocatalyst surfaces at the atomic level is crucial to understanding catalytic reaction mechanisms and developing high-performance catalysts. Nevertheless, better understanding the inherent insufficiency of a long-range ordered lattice in nanocatalysts is a big challenge. In this work, we report the local structure of Pd nanocatalysts, which is beneficial for demonstrating the shape-structure-adsorption relationship in acetylene hydrogenation. The 5.27 nm spherical Pd catalyst (Pdsph) shows an ethylene selectivity of 88% at complete acetylene conversion, which is much higher than those of the Pd octahedron and Pd cube and superior to other reported monometallic Pd nanocatalysts so far. By virtue of the local structure revelation combined with the atomic pair distribution function (PDF) and reverse Monte Carlo (RMC) simulation, the atomic surface distribution of the unique compressed strain of Pd-Pd pairs in Pdsph was revealed. Density functional theory calculations verified the obvious weakening of the ethylene adsorption energy on account of the surface strain of Pdsph. It is the main factor to avoid the over-hydrogenation of acetylene. The present work, entailing shape-induced surface strain manipulation and atomic 3D insight, opens a new path to understand and optimize chemical activity and selectivity in the heterogeneous catalysis process.

10.
J Am Chem Soc ; 145(31): 17096-17102, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37490643

RESUMEN

A cubic metal exhibiting zero thermal expansion (ZTE) over a wide temperature window demonstrates significant applications in a broad range of advanced technologies but is extremely rare in nature. Here, enabled by high-temperature synthesis, we realize tunable thermal expansion via magnetic doping in the class of kagome cubic (Fd-3m) intermetallic (Zr,Nb)Fe2. A remarkably isotropic ZTE is achieved with a negligible coefficient of thermal expansion (+0.47 × 10-6 K-1) from 4 to 425 K, almost wider than most ZTE in metals available. A combined in situ magnetization, neutron powder diffraction, and hyperfine Mössbauer spectrum analysis reveals that interplanar ferromagnetic ordering contributes to a large magnetic compensation for normal lattice contraction upon cooling. Trace Fe-doping introduces extra magnetic exchange interactions that distinctly enhance the ferromagnetism and magnetic ordering temperature, thus engendering such an ultrawide ZTE. This work presents a promising ZTE in kagome metallic materials.

11.
Chem Soc Rev ; 51(13): 5351-5364, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35735127

RESUMEN

Chemical pressure, a strange but familiar concept, is a lattice internal force caused by lattice strain with chemical modifications and arouses great interest due to its diversity and efficiency to synthesize new compounds and tune functional materials. Different from physical pressure loaded by an external force that is positive, chemical pressure can be either positive or negative (contract a lattice or expand it), often through flexible and mild chemical synthesis strategies, which are particularly important as a degree of freedom to manipulate material behaviors. In this tutorial review, we summarize the features of chemical pressure as a methodology and demonstrate its role in synthesizing and discovering some typical magnetically, electrically, and thermally responsive functional materials. The measure of chemical pressure using experimental lattice strain and elastic modulus was proposed, which can be used for quantitative descriptions of the correlation between lattice distortion and properties. From a lattice strain point of view, we classify chemical pressure into different categories: (i) chemical substitution, (ii) chemical intercalation/de-intercalation, (iii) size effect, and (iv) interface constraint, etc. Chemical pressure affects chemical bonding and rationalizes the crystal structure by modifying the electronic structure of solids, regulating the lattice symmetry, local structure, phonon structure effects etc., emerging as a general and effective method for synthesizing new compounds and tuning functional materials.

12.
Nano Lett ; 22(23): 9405-9410, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36410727

RESUMEN

The insight into the three-dimensional configuration of ferroelectric ordering in ferroelectric nanomaterials is motivated by the application of the development of functional nanodevices and the structural designing. However, the atomic deciphering of the spatial distribution of ordered structure remains challenging for the limitation of dimension and probing techniques. In this paper, a neutron pair distribution function (nPDF) was utilized to analyze the spontaneous polarization distribution of zero-dimensional PbTiO3 nanoparticles in three dimensions, via the application of reverse Monte Carlo (RMC) modeling. The comprehensive identification with transmission electron microscopy verified the linear characteristics of polarization along the c-axis in the main body, while electric polarization distribution on the surface was enhanced abnormally. In addition, the correlation of dipole vectors extending to three unit cells below the surface is retained. This work shows an application of the micro/macroscale information to effectively decode the polarization structure of nanoferroelectrics, providing new views of designing nanoferroelectric devices.

13.
Angew Chem Int Ed Engl ; 62(15): e202219230, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780319

RESUMEN

Manganese-rich layered oxide cathodes of sodium-ion batteries (SIBs) are extremely promising for large-scale energy storage owing to their high capacities and cost effectiveness, while the Jahn-Teller (J-T) distortion and low operating potential of Mn redox largely hinder their practical applications. Herein, we reveal that annealing in argon rather than conventional air is a universal strategy to comprehensively upgrade the Na-storage performance of Mn-based oxide cathodes. Bulk oxygen vacancies are introduced via this method, leading to reduced Mn valence, lowered Mn 3d-orbital energy level, and formation of the new-concept Mn domains. As a result, the energy density of the model P2-Na0.75 Mg0.25 Mn0.75 O2 cathode increases by ≈50 % benefiting from the improved specific capacity and operating potential of Mn redox. The Mn domains can disrupt the cooperative J-T distortion, greatly promoting the cycling stability. This exciting finding opens a new avenue towards high-performance Mn-based oxide cathodes for SIBs.

14.
Angew Chem Int Ed Engl ; 62(27): e202303482, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37129053

RESUMEN

Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2 (WO4 )3 :Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2 (WO4 )3 :Yb/Er, which has set a record of both the Yb3+ -Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073 K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.

15.
J Am Chem Soc ; 144(30): 13688-13695, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35876697

RESUMEN

Overcoming thermal quenching is an essential issue in the practical application of luminescent materials. Herein, we found that negative thermal expansion (NTE) can achieve the thermal enhancement of luminescence in molecular materials based on three metal-organic frameworks CuX-bpy (X = Cl, Br, I; bpy = 4,4'-bipyridine). All complexes exhibit NTE on the c-axis, and the strongest NTE leads to a contraction of the Cu...Cu distance in CuCl-bpy, which further intensifies the luminescence emission. This phenomenon indicates the existence of thermally enhanced charge transfer. Moreover, the origin of the distinction in charge transfer attributed to the different valence states of the copper is investigated through the combined studies of X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and density functional theory calculations. This research provides a new approach to modulating the luminescence thermal enhancement by NTE.

16.
J Am Chem Soc ; 144(44): 20298-20305, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36300893

RESUMEN

The revelation of the atomic 3D structure of sub-5 nm bimetal nanocatalysts challenges the limitations of conventional methods. Notably, the identification of the cooperative relationship between the active sites and nearby coordination environment during catalytic reactions depends on the stereo distribution of local phases and chemical composition within a short range. As a model nanocatalyst in our investigation, we studied the ordered PtFe bimetals in hydrogen evolution reactions (HER). By combining pair distribution functions with reverse Monte Carlo, local-range phase symmetry, chemical composition, and atom distribution were determined. The segregation of local phase segments as disordered Pt-rich A1 and Pt3Fe L12 phases can be attributed to the marked improvement of HER activity and stability in Pt56Fe44. Following the etching of the outermost-surface Fe, the remaining disordered segregation offered a large number of active Pt sites for discharge and electrochemical desorption reactions. It resulted in local-bonding Pt pairs that made it easier for adsorbed hydrogen atoms to recombine. The current research will provide structural insight into the local range for bimetal nanocatalysts and be valuable for the creation of new, low-cost nanocatalysts.

17.
Inorg Chem ; 61(26): 10006-10014, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35723523

RESUMEN

Supported atomic dispersion metals are of great interest, and the interfacial effect between isolated metal atoms and supports is crucial in heterogeneous catalysis. Herein, the behavior of single-atom Cu catalysts dispersed on CeO2 (100), (110), and (111) surfaces has been studied by DFT + U calculations. The interactions between ceria crystal planes and isolated Cu atoms together with their corresponding catalytic activities for CO oxidation are investigated. The CeO2 (100) and (111) surfaces can stabilize active Cu+ species, while Cu exists as Cu2+ on the (110) surface. Cu+ is certified as the most active site for CO adsorption, which can promote the formation of the reaction intermediates and reduce reaction energy barriers. For the CeO2 (100) surface, the interaction between CO and Cu is weak and the CO adsorbate is more likely to activate the subsurface oxygen. The catalytic performance is closely related to the binding strength of CO to the active Cu single atoms on the different subsurfaces. These results bring a significant insight into the rational design of single metal atoms on ceria and other reducible oxides.

18.
Inorg Chem ; 61(23): 8634-8638, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35652917

RESUMEN

Two-dimensional negative thermal expansion (NTE) is achieved in a tetragonal oxalate-based metal-organic framework (MOF), CdZrSr(C2O4)4, within a temperature range from 123 to 398 K [space group I4̅m2, αa = -2.4(7) M K-1, αc = 11.3(3) M K-1, and αV = 6.4(1) M K-1]. By combining variable-temperature X-ray diffraction, a high-resolution synchrotron X-ray pair distribution function, and thermogravimetry-differential scanning calorimetry, we shows that NTE within the ab plane derives from the oriented rotation of an oxalate ligand in zigzag chains (-CdO8-ox-ZrO8-ox-)∞. That is simplified to the Zr atom rotating with an unchanged Zr···Cd distance as the radius, which also gives rise to the deformation of a hingelike connection along the c axis and results in its positive thermal expansion. By virtue of the facile and low-cost oxalate ligand, the present NTE MOF may show application prospects in the future.

19.
J Am Chem Soc ; 143(17): 6491-6497, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900066

RESUMEN

Although BaTiO3 is one of the most famous lead-free piezomaterials, it suffers from small spontaneous and low Curie temperature. Chemical pressure, as a mild way to modulate the structures and properties of materials by element doping, has been utilized to enhance the ferroelectricity of BaTiO3 but is not efficient enough. Here, we report a promoted chemical pressure route to prepare high-performance BaTiO3 films, achieving the highest remanent polarization, Pr (100 µC/cm2), to date and high Curie temperature, Tc (above 1000 °C). The negative chemical pressure (∼-5.7 GPa) was imposed by the coherent lattice strain from large cubic BaO to small tetragonal BaTiO3, generating high tetragonality (c/a = 1.12) and facilitating large displacements of Ti. Such negative pressure is especially significant to the bonding states, i.e., hybridization of Ba 5p-O 2p, whereas ionic bonding in bulk and strong bonding of Ti eg and O 2p, which contribute to the tremendously enhanced polarization. The promoted chemical pressure method shows general potential in improving ferroelectric and other functional materials.

20.
Phys Rev Lett ; 127(5): 055501, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397222

RESUMEN

Super Invar (SIV), i.e., zero thermal expansion of metallic materials underpinned by magnetic ordering, is of great practical merit for a wide range of high precision engineering. However, the relatively narrow temperature window of SIV in most materials restricts its potential applications in many critical fields. Here, we demonstrate the controlled design of thermal expansion in a family of R_{2}(Fe,Co)_{17} materials (R=rare Earth). We find that adjusting the Fe-Co content tunes the thermal expansion behavior and its optimization leads to a record-wide SIV with good cyclic stability from 3-461 K, almost twice the range of currently known SIV. In situ neutron diffraction, Mössbauer spectra and first-principles calculations reveal the 3d bonding state transition of the Fe-sublattice favors extra lattice stress upon magnetic ordering. On the other hand, Co content induces a dramatic enhancement of the internal molecular field, which can be manipulated to achieve "ultrawide" SIV over broad temperature, composition and magnetic field windows. These findings pave the way for exploiting thermal-expansion-control engineering and related functional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA