RESUMEN
GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.
Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Helicobacter pylori , Neoplasias Gástricas , Proteína con Dedos de Zinc GLI1 , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Transducción de Señal , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Regulación hacia Arriba , Masculino , Carcinogénesis/genéticaRESUMEN
Gastric cancer (GC) exhibits significant heterogeneity and its prognosis remains dismal. Therefore, it is essential to investigate new approaches for diagnosing and treating GC. Desmosome proteins are crucial for the advancement and growth of cancer. Plakophilin-2 (PKP2), a member of the desmosome protein family, frequently exhibits aberrant expression and is strongly associated with many tumor types' progression. In this study, we found upregulation of PKP2 in GC. Further correlation analysis showed a notable association between increased PKP2 expression and both tumor stage and poor prognosis in individuals diagnosed with gastric adenocarcinoma. In addition, our research revealed that the Yes-associated protein1 (YAP1)/TEAD4 complex could stimulate the transcriptional expression of PKP2 in GC. Elevated PKP2 levels facilitate activation of the AKT/mammalian target of rapamycin signaling pathway, thereby promoting the malignant progression of GC. By constructing a mouse model, we ultimately validated the molecular mechanism and function of PKP2 in GC. Taken together, these discoveries suggest that PKP2, as a direct gene target of YAP/TEAD4 regulation, has the potential to be used as an indication of GC progression and prognosis. PKP2 is expected to be a promising therapeutic target for GC.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Proteínas Musculares , Placofilinas , Neoplasias Gástricas , Factores de Transcripción de Dominio TEA , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Placofilinas/genética , Placofilinas/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo , Ratones , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Pronóstico , Línea Celular Tumoral , Masculino , Proliferación Celular , Transducción de Señal , Femenino , Ratones Desnudos , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/genéticaRESUMEN
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Asunto(s)
Autofagia , Ferritinas , Neoplasias Gastrointestinales , Coactivadores de Receptor Nuclear , Humanos , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/metabolismo , Ferritinas/metabolismo , Autofagia/efectos de los fármacos , Animales , Coactivadores de Receptor Nuclear/metabolismo , Hierro/metabolismo , HomeostasisRESUMEN
OBJECTIVE: Signal transduction and transcriptional activator 5A (STAT5A), which has been reported to be frequently phosphorylated in tumors, plays pivotal roles in tumor progression. However, the role of STAT5A in gastric cancer (GC) progression and the downstream targets of STAT5A remain largely unknown. METHODS: The expression of STAT5A and CD44 were assessed. GC cells were treated with altered STAT5A and CD44 to evaluate their biological functions. Nude mice were given injections of genetically manipulated GC cells and growth of xenograft tumors and metastases was measured. RESULTS: The increased level of p-STAT5A is associated with tumor invasion and poor prognosis in GC. STAT5A promoted GC cell proliferation by upregulating CD44 expression. STAT5A directly binds to the CD44 promoter and promotes its transcription. CONCLUSIONS: The STAT5A/CD44 pathway plays a critical role in GC progression, promising potential clinical applications for improving treatment of GC.
Asunto(s)
Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/genética , Regulación hacia Arriba , Ratones Desnudos , Factores de Transcripción/metabolismo , Transducción de Señal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Proteínas Supresoras de Tumor/genética , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismoRESUMEN
BACKGROUND: Helicobacter pylori (H. pylori) infection causes aberrant DNA methylation and contributes to the risk of gastric cancer (GC). Guanine nucleotide-binding protein subunit beta-4 (GNB4) is involved in various tumorigenic processes. We found an aberrant methylation level of GNB4 in H. pylori-induced GC in our previous bioinformatic analysis; however, its expression and underlying molecular mechanisms are poorly understood. METHODS: The expression, underlying signaling pathways, and clinical significance of GNB4 were analyzed in a local cohort of 107 patients with GC and several public databases. H. pylori infection was induced in in vitro and in vivo models. Methylation-specific PCR, pyrosequencing, and mass spectrometry analysis were used to detect changes in methylation levels. GNB4, TET1, and YAP1 were overexpressed or knocked down in GC cell lines. We performed gain- and loss-of-function experiments, including CCK-8, EdU, colony formation, transwell migration, and invasion assays. Nude mice were injected with genetically manipulated GC cells, and the growth of xenograft tumors and metastases was measured. Real-time quantitative PCR, western blotting, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and co-immunoprecipitation experiments were performed to elucidate the underlying molecular mechanisms. RESULTS: GNB4 expression was significantly upregulated in GC and correlated with aggressive clinical characteristics and poor prognosis. Increased levels of GNB4 were associated with shorter survival times. Infection with H. pylori strains 26695 and SS1 induced GNB4 mRNA and protein expression in GC cell lines and mice. Additionally, silencing of GNB4 blocked the pro-proliferative, metastatic, and invasive ability of H. pylori in GC cells. H. pylori infection remarkably decreased the methylation level of the GNB4 promoter region, particularly at the CpG#5 site (chr3:179451746-179451745). H. pylori infection upregulated TET1 expression via activation of the NF-κB. TET binds to the GNB4 promoter region which undergoes demethylation modification. Functionally, we identified that GNB4 induced oncogenic behaviors of tumors via the Hippo-YAP1 pathway in both in vitro and in vivo models. CONCLUSIONS: Our findings demonstrate that H. pylori infection activates the NF-κB-TET1-GNB4 demethylation-YAP1 axis, which may be a potential therapeutic target for GC.
Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Helicobacter pylori , Neoplasias Gástricas , Humanos , Ratones , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Helicobacter pylori/metabolismo , Ratones Desnudos , Carcinogénesis/genética , Neoplasias Gástricas/genética , Desmetilación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismoRESUMEN
Ferroptosis is a newly discovered form of regulatory cell death induced by iron-dependent lipid peroxidation. Infection with Helicobacter pylori (H. pylori) is regarded as a high-risk factor for the development of gastric cancer (GC) and is associated with an increase in the levels of reactive oxygen species with activation of oncogenic signaling pathways. However, whether GC arising in the context of infection with H. pylori is correlated with ferroptosis is still unknown. In this study, we demonstrate that H. pylori infection increased the sensitivity of GC cells to RSL3 (RAS-selective lethal3)-induced ferroptosis. The molecular subtypes mediated by ferroptosis-related genes are associated with tumor microenvironment (TME) cell infiltration and patient survival. Importantly, we identified that the expression of phosphorylase kinase G2 (PHKG2) was remarkably correlated with H. pylori infection, metabolic biological processes, patient survival and therapy response. We further found the mechanism of H. pylori-induced cell sensitivity to ferroptosis, which involves PHKG2 regulation of the lipoxygenase enzyme Arachidonate 5-Lipoxygenase (ALOX5). In conclusion, PHKG2 facilitates RSL3-induced ferroptosis in H. pylori-positive GC cells by promoting ALOX5 expression. These findings may contribute to a better understanding of the unique pathogenesis of H. pylori-induced GC and allow for maximum efficacy of genetic, cellular, and immune therapies for controlling ferroptosis in diverse contexts.
Asunto(s)
Ferroptosis , Helicobacter pylori , Neoplasias Gástricas , Humanos , Fosforilasa Quinasa , Neoplasias Gástricas/metabolismo , Muerte Celular , Microambiente TumoralRESUMEN
BACKGROUND: Malignant melanoma is the leading cause of skin cancer-related death, with high malignancy and rapid progression. Total glucosides of paeony (TGP) are extracted from the roots of Paeonia Lactiflora Pall and are widely used in the treatment of chronic hepatitis, rheumatoid arthritis, and adjuvant therapy of tumor chemotherapy. METHODS: In the present research, M14 and A375 cells were treated with TGP. CCK8, transwell and western blotting were performed to analyze the effect of TGP on cell function. RESULTS: TGP treatment impeded the proliferation and migration and activated the apoptosis pathway in melanoma cells. Importantly, TGP induced the degradation of α5-nAChR. Overexpression of α5-nAChR inhibited the anti-cancer effect of TGP. In addition, TGP treatment released cytochrome c from mitochondria into the cytoplasm, inducing mitochondrial dysfunction in melanoma cells. TGP also inhibited the phosphorylation of P38-MAPK, and P38-MAPK inhibitor reduced the promoting effect of α5-nAChR in cell proliferation and migration. CONCLUSION: TGP inhibited cell viability and migration and induced mitochondrial dysfunction and apoptosis by promoting the degradation of α5-nAChR in melanoma cells. This research provided a potential therapeutic anti-cancer drug for treatment strategies of melanoma.
RESUMEN
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Asunto(s)
Muerte Celular , Neoplasias Gastrointestinales , Metales , Humanos , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Iones/metabolismo , Antineoplásicos/farmacologíaRESUMEN
Background: Osteosarcoma (OS) is highly malignant and prone to local infiltration and distant metastasis. Due to the poor outcomes of OS patients, the study aimed to identify differentially expressed genes (DEGs) in OS and explore their role in the carcinogenesis and progression of OS. Methods: RNA sequencing was performed to identify DEGs in OS. The functions of the DEGs in OS were investigated using bioinformatics analysis, and DEG expression was verified using RT-qPCR and Western blotting. The role of SLC25A4 was evaluated using gene set enrichment analysis (GSEA) and then investigated using functional assays in OS cells. Results: In all, 8353 DEGs were screened. GO and KEGG enrichment analyses indicated these DEGs showed strong enrichment in the calcium signaling pathway and pathways in cancer. Moreover, the Kaplan-Meier survival analysis showed ten hub genes were related to the outcomes of OS patients. Both SLC25A4 transcript and protein expression were significantly reduced in OS, and GSEA suggested that SLC25A4 was associated with cell cycle, apoptosis and inflammation. SLC25A4-overexpressing OS cells exhibited suppressed proliferation, migration, invasion and enhanced apoptosis. Conclusion: SLC25A4 was found to be significantly downregulated in OS patients, which was associated with poor prognosis. Modulation of SLC25A4 expression levels may be beneficial in OS treatment.
RESUMEN
Ferroptosis holds great potential as a therapeutic approach for gastric cancer (GC), a prevalent and deadly malignant tumor associated with high rates of incidence and mortality. Myricetin, well-known for its multifaceted biomedical attributes, particularly its anticancer properties, has yet to be thoroughly investigated regarding its involvement in ferroptosis. The aim of this research was to elucidate the impact of myricetin on ferroptosis in GC progression. The present study observed that myricetin could trigger ferroptosis in GC cells by enhancing malondialdehyde production and Fe2+ accumulation while suppressing glutathione levels. Mechanistically, myricetin directly interacted with NADPH oxidase 4 (NOX4), influencing its stability by inhibiting its ubiquitin degradation. Moreover, myricetin regulated the inhibition of ferroptosis induced by Helicobacter pylori cytotoxin-associated gene A (CagA) through the NOX4/NRF2/GPX4 pathway. In vivo experiments demonstrated that myricetin treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice. It was accompanied by increased NOX4 expression in tumor tissue and suppression of the NRF2/GPX4 antioxidant pathway. Therefore, this research underscores myricetin as a novel inducer of ferroptosis in GC cells through its interaction with NOX4. It is a promising candidate for GC treatment.
Asunto(s)
Ferroptosis , Flavonoides , Neoplasias Gástricas , Animales , Ratones , NADPH Oxidasa 4 , Ratones Desnudos , Factor 2 Relacionado con NF-E2RESUMEN
N6-methyladenosine (m6A) modification is involved in many aspects of gastric cancer (GC). Moreover, m6A and glycolysis-related genes (GRGs) play important roles in immunotherapeutic and prognostic implication of GC. However, GRGs involved in m6A regulation have never been analyzed comprehensively in GC. Herein, the study aims to identify and validate a novel signature based on m6A-related GRGs in GC patients. Therefore, a m6A-related GRGs signature is established, which can predict the survival of patients with GC and remain an independent prognostic factor in multivariate analyses. Clinical significance of the model is well validated in internal cohort and independent validation cohort. In addition, the expression levels of risk model-related GRGs in clinical samples are validated. Consistent with the database results, all model genes are up-regulated in expression except DCN. After regrouping the patients based on this risk model, the study can effectively distinguish between them in respect to immune-cell infiltration microenvironment and immunotherapeutic response. Additionally, candidate drugs targeting risk model-related GRGs are confirmed. Finally, a nomogram combining risk scores and clinical parameters is created, and calibration plots show that the nomogram can accurately predict survival. This risk model can serve as a reliable assessment tool for predicting prognosis and immunotherapeutic responses in GC patients.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Genes Reguladores , Nomogramas , Inmunoterapia , Microambiente Tumoral/genéticaRESUMEN
Lactate dehydrogenase (LDH) is a crucial glycolytic enzyme which mediates the metabolic plasticity of cancer cells, however its clinical significance in renal cell carcinoma (RCC) is poorly understood. Herein, we examined the prognostic significance of the two primary components of LDH, i.e., LDHA and LDHB, in clear cell RCC (ccRCC) patients and further explored their association with immune infiltration in ccRCC. In this study, the expression levels of LDHA and LDHB were examined in ccRCC and adjacent normal tissues by Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, and western blotting (WB) analyses, and their prognostic values were estimated in 150 ccRCC and 30 adjacent normal tissues by immunohistochemistry (IHC) analysis. The relationship to immune infiltration of LDHA and LDHB genes was further investigated using tumor immune estimation resource 2 (TIMER2) and Tumor-Immune System Interactions and DrugBank (TISIDB) databases, respectively. Public databases and WB analyses demonstrated higher LDHA and lower LDHB in ccRCC than in non-tumor tissues. IHC analysis revealed that LDHA and LDHB expression profiles were significantly associated with tumor grade, stage, size, and overall survival (OS). Univariate survival analysis displayed that high grade, advanced stage, large tumor, metastasis, high LDHA, and low LDHB expression were significantly associated with a poorer OS, and multivariate analysis revealed tumor stage and LDHB were identified as independent predictors for OS in patients with ccRCC. Further TIMER2 and TISIDB analyses demonstrated that LDHA and LDHB expression was significantly related to multiple immune cells and immune inhibitors in over 500 ccRCC patients. These findings revealed that LDHB was an independent favorable predictor, and LDHA and LDHB correlated with tumor immune infiltrates in ccRCC patients, which indicated LDHA/LDHB could be implicated in the tumorigenesis of ccRCC and might be potential therapeutic targets for patients with ccRCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , L-Lactato Deshidrogenasa , Humanos , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , L-Lactato Deshidrogenasa/genética , PronósticoRESUMEN
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Vía de Señalización Hippo , Proliferación Celular , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/metabolismoRESUMEN
The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target.
Asunto(s)
Leucemia Linfoide , MicroARNs , ARN Largo no Codificante , Humanos , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Linfoide/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
BACKGROUND: Castration-resistant prostate cancer (CRPC) is currently the main challenge for prostate cancer (PCa) treatment, and there is an urgent need to find novel therapeutic targets and drugs. Prohibitin (PHB1) is a multifunctional chaperone/scaffold protein that is upregulated in various cancers and plays a pro-cancer role. FL3 is a synthetic flavagline drug that inhibits cancer cell proliferation by targeting PHB1. However, the biological functions of PHB1 in CRPC and the effect of FL3 on CRPC cells remain to be explored. METHODS: Several public datasets were used to analyze the association between the expression level of PHB1 and PCa progression as well as outcome in PCa patients. The expression of PHB1 in human PCa specimens and PCa cell lines was examined by immunohistochemistry (IHC), qRT-PCR, and Western blot. The biological roles of PHB1 in castration resistance and underlying mechanisms were investigated by gain/loss-of-function analyses. Next, in vitro and in vivo experiments were conducted to investigate the anti-cancer effects of FL3 on CRPC cells as well as the underlying mechanisms. RESULTS: PHB1 expression was significantly upregulated in CRPC and was associated with poor prognosis. PHB1 promoted castration resistance of PCa cells under androgen deprivation condition. PHB1 is an androgen receptor (AR) suppressive gene, and androgen deprivation promoted the PHB1 expression and its nucleus-cytoplasmic translocation. FL3, alone or combined with the second-generation anti-androgen Enzalutamide (ENZ), suppressed CRPC cells especially ENZ-sensitive CRPC cells both in vitro and in vivo. Mechanically, we demonstrated that FL3 promoted trafficking of PHB1 from plasma membrane and mitochondria to nucleus, which in turn inhibited AR signaling as well as MAPK signaling, yet promoted apoptosis in CRPC cells. CONCLUSION: Our data indicated that PHB1 is aberrantly upregulated in CRPC and is involved in castration resistance, as well as providing a novel rational approach for treating ENZ-sensitive CRPC.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos , Prohibitinas , Nitrilos/farmacología , Nitrilos/uso terapéutico , Línea Celular Tumoral , Proliferación CelularRESUMEN
Ferroptosis is a novel form of regulated cell death trigged by various biological processes, and p53 is involved in different ferroptosis regulations and functions as a crucial regulator. Both DNA and RNA can fold into G-quadruplex in GC-rich regions and increasing shreds of evidence demonstrate that G-quadruplexes have been associated with some important cellular events. Investigation of G-quadruplexes is thus vital to revealing their biological functions. Specific G-quadruplexes are investigated to discover new effective anticancer drugs. Multiple modulations have been discovered between the secondary structure G-quadruplex and p53, probably further influencing the ferroptosis in cancer. G-quadruplex binds to ferric iron-related structures directly and may affect the p53 pathways as well as ferroptosis in cancer. In addition, G-quadruplex also interacts with p53 indirectly, including iron-sulfur cluster metabolism, telomere homeostasis, lipid peroxidation, and glycolysis. In this review, we summarized the latent interplay between G-quadruplex and p53 which focused mainly on ferroptosis in cancer to provide the potential understanding and encourage future studies.
RESUMEN
Purpose: The persistent pandemic of coronavirus disease 2019 (COVID-19), the discovery of gastrointestinal transmission routes and the possible susceptibility of cancer patients to COVID-19 have forced us to search for effective pathways against stomach adenocarcinoma (STAD)/COVID-19. Vitamin D3 (VD3) is a steroid hormone with antiviral, anti-inflammatory and immunomodulatory properties. This study aimed to evaluate the possible functional role and potential mechanisms of action of VD3 as an anti-COVID-19 and anti- STAD. Methods: Clinicopathological analysis, enrichment analysis and protein interaction analysis using bioinformatics and network pharmacology methods. Validate the binding activity of VD3 to core pharmacological targets and viral crystal structures using molecular docking. Results: We revealed the clinical characteristics of STAD/COVID-19 patients. We also demonstrated that VD3 may be anti- STAD/COVID-19 through antiviral, anti-inflammatory, and immunomodulatory pathways. Molecular docking results showed that VD3 binds well to the relevant targets of COVID-19, including the spike RBD/ACE2 complex and main protease (Mpro, also known as 3CLpro). We also identified five core pharmacological targets of VD3 in anti-STAD/COVID-19 and validated the binding activity of VD3 to PAI1 by molecular docking. Conclusion: This study reveals for the first time that VD3 may act on disease target gene SERPINE1 through inflammatory and viral related signaling pathways and biological functions for the therapy of STAD/COVID-19. This may provide a new idea for the use of VD3 in the treatment of STAD/COVID-19.
RESUMEN
Background: Platelets (PLT) have a significant effect in promoting cancer progression and hematogenous metastasis. However, the effect of platelet activation-related lncRNAs (PLT-related lncRNAs) in gastric cancer (GC) is still poorly understood. In this study, we screened and validated PLT-related lncRNAs as potential biomarkers for prognosis and immunotherapy in GC patients. Methods: We obtained relevant datasets from the Cancer Genome Atlas (TCGA) and Gene Ontology (GO) Resource Database. Pearson correlation analysis was used to identify PLT-related lncRNAs. By using the univariate, least absolute shrinkage and selection operator (LASSO) Cox regression analyses, we constructed the PLT-related lncRNAs model. Kaplan-Meier survival analysis, univariate, multivariate Cox regression analysis, and nomogram were used to verify the model. The Gene Set Enrichment Analysis (GSEA), drug screening, tumor immune microenvironment analysis, epithelial-mesenchymal transition (EMT), and DNA methylation regulators correlation analysis were performed in the high- and low-risk groups. Patients were regrouped based on the risk model, and candidate compounds and immunotherapeutic responses aimed at GC subgroups were also identified. The expression of seven PLT-related lncRNAs was validated in clinical medical samples using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: In this study, a risk prediction model was established using seven PLT-related lncRNAs -(AL355574.1, LINC01697, AC002401.4, AC129507.1, AL513123.1, LINC01094, and AL356417.2), whose expression were validated in GC patients. Kaplan-Meier survival analysis, the receiver operating characteristic (ROC) curve analysis, univariate, multivariate Cox regression analysis verified the accuracy of the model. We screened multiple targeted drugs for the high-risk patients. Patients in the high-risk group had a poorer prognosis since low infiltration of immune killer cells, activation of immunosuppressive pathways, and poor response to immunotherapy. In addition, we revealed a close relationship between risk scores and EMT and DNA methylation regulators. The nomogram based on risk score suggested a good ability to predict prognosis and high clinical benefits. Conclusion: Our findings provide new insights into how PLT-related lncRNAs biomarkers affect prognosis and immunotherapy. Also, these lncRNAs may become potential biomarkers and therapeutic targets for GC patients.
RESUMEN
Objective: Gastroesophageal adenocarcinoma (GEA) is a high deadly and heterogeneous cancer. RNA N6-methyladenosine (m6A) modification plays a non-negligible role in shaping individual tumour microenvironment (TME) characterizations. However, the landscape and relationship of m6A modification patterns and TME cell infiltration features remain unknown in GEA. Methods: In this study, we examined the TME of GEA using assessments of the RNA-sequencing data focusing on the distinct m6A modification patterns from the public databases. Intrinsic patterns of m6A modification were evaluated for associations with clinicopathological characteristics, underlying biological pathways, tumour immune cell infiltration, oncological outcomes, and treatment responses. The expression of key m6A regulators and module genes was validated by qRT-PCR analysis. Results: We identified two distinct m6A modification patterns of GEA (cluster 1/2 subgroup), and correlated two subgroups with TME cell-infiltrating characteristics. Cluster 2 subgroup correlates with a poorer prognosis, downregulated PD-1 expression, higher risk scores, and distinct immune cell infiltration. In addition, PPI and WGCNA network analysis were integrated to identify key module genes closely related to immune infiltration of GEA to find immunotherapy markers. COL4A1 and COL5A2 in the brown module were significantly correlated to the prognosis, PD-1/L1 and CTLA-4 expression of GEA patients. Finally, a prognostic risk score was constructed using m6A regulator-associated signatures that represented an independent prognosis factor for GEA. Interestingly, COL5A2 expression was linked to the response to anti-PD-1 immunotherapy, m6A regulator expression, and risk score. Conclusion: Our work identified m6A RNA methylation regulators as an important class of players in the malignant progression of GEA and were associated with the complexity of the TME. COL5A2 may be the potential biomarker which contributes to predicting the response to anti-PD-1 immunotherapy and patients' prognosis.
Asunto(s)
Adenocarcinoma , Microambiente Tumoral , Humanos , Metilación , Inmunoterapia , Pronóstico , Factores Inmunológicos , Adenocarcinoma/genética , Adenocarcinoma/terapia , ARN/genéticaRESUMEN
NF-κB signaling pathway is a critical link between inflammation and cancer. Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in dysregulation of NF-κB. Herein, we reported a novel lncRNA IKBKBAS that activated NF-κB in lung adenocarcinoma (LUAD) by upregulating IKKß, a key member of NF-κB signaling pathway, thereby promoting the metastasis of LUAD both in vitro and in vivo. The upregulated IKBKBAS functioned as a competing endogenous RNA (ceRNA) via competing with IKKß mRNA for binding miR-4741, consequently leading to upregulation and activation of IKKß, and ultimately activation of NF-κB. The abnormally elevated IKBKBAS in LUAD was mainly resulted from the extremely decrease of miR-512-5p that targeting IKBKBAS. Furthermore, we identified a positive feedback loop between NF-κB and IKBKBAS, in which NF-κB activation induced by overexpression of IKBKBAS could promote the transcription of IKBKBAS by binding the κB sites within IKBKBAS promoter. Our studies revealed that IKBKBAS was involved in the activation of NF-κB signaling by upregulating the expression of IKKß, which made it serve as a potential novel target for therapies to LUAD.