Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35202573

RESUMEN

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Asunto(s)
Cromatina , Proteínas de Drosophila , Islas de CpG , Proteínas de Drosophila/metabolismo , Código de Histonas , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas
2.
Nucleic Acids Res ; 50(1): 191-206, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34893908

RESUMEN

Histone variants have been implicated in regulating chromatin dynamics and genome functions. Previously, we have shown that histone variant H3.3 actively marks enhancers and cooperates with H2A.Z at promoters to prime the genes into a poised state in mouse embryonic stem cells (mESCs). However, how these two important histone variants collaboratively function in this process still remains elusive. In this study, we found that depletion of different components of HIRA complex, a specific chaperone of H3.3, results in significant decreases of H2A.Z enrichment at genome scale. In addition, CUT&Tag data revealed a genomic colocalization between HIRA complex and SRCAP complex. In vivo and in vitro biochemical assays verified that HIRA complex could interact with SRCAP complex through the Hira subunit. Furthermore, our chromatin accessibility and transcription analyses demonstrated that HIRA complex contributed to preset a defined chromatin feature around TSS region for poising gene transcription. In summary, our results unveiled that while regulating the H3.3 incorporation in the regulatory regions, HIRA complex also collaborates with SRCAP to deposit H2A.Z onto the promoters, which cooperatively determines the transcriptional potential of the poised genes in mESCs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Ratones
3.
BMC Biol ; 16(1): 110, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285846

RESUMEN

BACKGROUND: H3.3 is an ancient and conserved H3 variant and plays essential roles in transcriptional regulation. HIRA complex, which is composed of HIRA, UBN1 or UBN2, and Cabin1, is a H3.3 specific chaperone complex. However, it still remains largely uncharacterized how HIRA complex specifically recognizes and deposits H3.3 to the chromatin, such as promoters and enhancers. RESULTS: In this study, we demonstrate that the UBN1 or UBN2 subunit is mainly responsible for specific recognition and direct binding of H3.3 by the HIRA complex. While the HIRA subunit can enhance the binding affinity of UBN1 toward H3.3, Cabin1 subunit cannot. We also demonstrate that both Ala87 and Gly90 residues of H3.3 are required and sufficient for the specific recognition and binding by UBN1. ChIP-seq studies reveal that two independent HIRA complexes (UBN1-HIRA and UBN2-HIRA) can cooperatively deposit H3.3 to cis-regulatory regions, including active promoters and active enhancers in mouse embryonic stem (mES) cells. Importantly, disruption of histone chaperone activities of UBN1 and UBN2 by FID/AAA mutation results in the defect of H3.3 deposition at promoters of developmental genes involved in neural differentiation, and subsequently causes the failure of activation of these genes during neural differentiation of mES cells. CONCLUSION: Together, our results provide novel insights into the mechanism by which the HIRA complex specifically recognizes and deposits H3.3 at promoters and enhancers of developmental genes, which plays a critical role in neural differentiation of mES cells.


Asunto(s)
Regulación de la Expresión Génica , Histonas/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Adaptadoras Transductoras de Señales , Animales , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 292(17): 7011-7022, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28298439

RESUMEN

Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members.


Asunto(s)
Retículo Endoplásmico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transporte de Proteínas , Secuencias de Aminoácidos , Núcleo Celular/metabolismo , Citosol/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lisofosfolípidos/metabolismo , Microscopía Fluorescente , Unión Proteica , Dominios Proteicos , Pirofosfatasas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo
5.
Cell Rep ; 32(4): 107953, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726618

RESUMEN

Chromatin dynamics play a critical role in cell fate determination and maintenance by regulating the expression of genes essential for development and differentiation. In mouse embryonic stem cells (mESCs), maintenance of pluripotency coincides with a poised chromatin state containing active and repressive histone modifications. However, the structural features of poised chromatin are largely uncharacterized. By adopting mild time-course MNase-seq with computational analysis, the low-compact chromatin in mESCs is featured in two groups: one in more open regions, corresponding to an active state, and the other enriched with bivalent histone modifications, considered the poised state. A parameter called the chromatin opening potential index (COPI) is also devised to quantify the transcription potential based on the dynamic changes of MNase-seq signals at promoter regions. Use of COPI provides effective prediction of gene activation potential and, more importantly, reveals a few developmental factors essential for mouse neural progenitor cell (NPC) differentiation.


Asunto(s)
Cromatina/genética , Regulación de la Expresión Génica/genética , Células-Madre Neurales/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Epigénesis Genética/genética , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Código de Histonas/genética , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
6.
Sci China Life Sci ; 59(3): 245-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26825948

RESUMEN

Histones are the main protein components of eukaryotic chromatin. Histone variants and histone modifications modulate chromatin structure, ensuring the precise operation of cellular processes associated with genomic DNA. H3.3, an ancient and conserved H3 variant, differs from its canonical H3 counterpart by only five amino acids, yet it plays essential and specific roles in gene transcription, DNA repair and in maintaining genome integrity. Here, we review the most recent insights into the functions of histone H3.3, and the involvement of its mutant forms in human diseases.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Animales , Cromatina/genética , Reparación del ADN/genética , Desarrollo Embrionario/genética , Inestabilidad Genómica/genética , Código de Histonas/genética , Humanos , Mutación , Transcripción Genética/genética
8.
FEBS Lett ; 586(6): 792-7, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22314276

RESUMEN

Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. Previously, we showed that autotaxin (ATX), the enzyme producing LPA from lysophosphatidylcholine (LPC), is induced by LPS in THP-1 cells via the activation of PKR, JNK and p38 MAPK. In this study, we find that ATX and LPA receptor 3 (LPA(3)) are coordinately up-regulated in LPS-stimulated THP-1 cells. PKR-mediated activation of JNK1 and p38 MAPK is required for both ATX and LPA(3) up-regulation. SPK1-mediated activation of the PI3K-AKT-ß-catenin pathway is essential for ATX induction, while SPK1-mediated ERK activation is required for LPA(3) up-regulation. Either ATX or LPA(3) knockdown inhibited CCL8 induction by LPS, suggesting that ATX and LPA(3) are involved in CCL8 induction during the inflammatory process against bacterial infection.


Asunto(s)
Lipopolisacáridos/farmacología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Monocitos/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , eIF-2 Quinasa/metabolismo , Línea Celular , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , Monocitos/citología , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Transducción de Señal/efectos de los fármacos , beta Catenina/genética , beta Catenina/metabolismo , eIF-2 Quinasa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Nat Struct Mol Biol ; 19(12): 1287-92, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142979

RESUMEN

Mammalian histone H3.3 is a variant of the canonical H3.1 essential for genome reprogramming in fertilized eggs and maintenance of chromatin structure in neuronal cells. An H3.3-specific histone chaperone, DAXX, directs the deposition of H3.3 onto pericentric and telomeric heterochromatin. H3.3 differs from H3.1 by only five amino acids, yet DAXX can distinguish the two with high precision. By a combination of structural, biochemical and cell-based targeting analyses, we show that Ala87 and Gly90 are the principal determinants of human H3.3 specificity. DAXX uses a shallow hydrophobic pocket to accommodate the small hydrophobic Ala87 of H3.3, whereas a polar binding environment in DAXX prefers Gly90 in H3.3 over the hydrophobic Met90 in H3.1. An H3.3-H4 heterodimer is bound by the histone-binding domain of DAXX, which makes extensive contacts with both H3.3 and H4.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Histonas/química , Chaperonas Moleculares/química , Proteínas Nucleares/química , Proteínas Co-Represoras , Dimerización , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA