Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 184(7): 1865-1883.e20, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636127

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding of the RNA virus and its interactions with host proteins could improve therapeutic interventions for COVID-19. By using icSHAPE, we determined the structural landscape of SARS-CoV-2 RNA in infected human cells and from refolded RNAs, as well as the regulatory untranslated regions of SARS-CoV-2 and six other coronaviruses. We validated several structural elements predicted in silico and discovered structural features that affect the translation and abundance of subgenomic viral RNAs in cells. The structural data informed a deep-learning tool to predict 42 host proteins that bind to SARS-CoV-2 RNA. Strikingly, antisense oligonucleotides targeting the structural elements and FDA-approved drugs inhibiting the SARS-CoV-2 RNA binding proteins dramatically reduced SARS-CoV-2 infection in cells derived from human liver and lung tumors. Our findings thus shed light on coronavirus and reveal multiple candidate therapeutics for COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , ARN Viral , Proteínas de Unión al ARN/antagonistas & inhibidores , SARS-CoV-2 , Animales , Línea Celular , Chlorocebus aethiops , Aprendizaje Profundo , Humanos , Conformación de Ácido Nucleico , ARN Viral/química , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética
2.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823670

RESUMEN

Homologous recombination (HR) is often used to achieve targeted gene integration because of its higher precision and operability compared with microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). It appears to be inefficient for gene integration in animal cells and embryos due to occurring only during cell division. Here we developed genome-wide high-throughput screening and a subsequently paired crRNA library screening to search for genes suppressing homology-directed repair (HDR). We found that, in the reporter system, HDR cells with knockdown of SHROOM1 were enriched as much as 4.7-fold than those with control. Down regulating SHROOM1 significantly promoted gene integration in human and mouse cells after cleavage by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9), regardless of the donor types. The knock-in efficiency of mouse embryos could also be doubled by the application of SHROOM1 siRNA during micro-injection. The increased HDR efficiency of SHROOM1 deletion in HEK293T cells could be counteracted by YU238259, an HDR inhibitor, but not by an NHEJ inhibitor. These results indicated that SHROOM1 was an HDR-suppressed gene and that the SHROOM1 knockdown strategy may be useful for a variety of applications, including gene editing to generate cell lines and animal models for studying gene function and human diseases.


Asunto(s)
Técnicas de Sustitución del Gen , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/genética , Reparación del ADN por Recombinación , Animales , Secuencia de Bases , Línea Celular , Embrión de Mamíferos/metabolismo , Edición Génica , Genoma Humano , Humanos , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , ARN/metabolismo
3.
Genome Res ; 26(9): 1233-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27516619

RESUMEN

Long noncoding RNAs (lncRNAs), a recently discovered class of cellular RNAs, play important roles in the regulation of many cellular developmental processes. Although lncRNAs have been systematically identified in various systems, most of them have not been functionally characterized in vivo in animal models. In this study, we identified 128 testis-specific Drosophila lncRNAs and knocked out 105 of them using an optimized three-component CRISPR/Cas9 system. Among the lncRNA knockouts, 33 (31%) exhibited a partial or complete loss of male fertility, accompanied by visual developmental defects in late spermatogenesis. In addition, six knockouts were fully or partially rescued by transgenes in a trans configuration, indicating that those lncRNAs primarily work in trans Furthermore, gene expression profiles for five lncRNA mutants revealed that testis-specific lncRNAs regulate global gene expression, orchestrating late male germ cell differentiation. Compared with coding genes, the testis-specific lncRNAs evolved much faster. Moreover, lncRNAs of greater functional importance exhibited higher sequence conservation, suggesting that they are under constant evolutionary selection. Collectively, our results reveal critical functions of rapidly evolving testis-specific lncRNAs in late Drosophila spermatogenesis.


Asunto(s)
Secuencia Conservada/genética , ARN Largo no Codificante/genética , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Animales , Sistemas CRISPR-Cas , Drosophila/genética , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino
4.
Nat Genet ; 56(1): 124-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38195860

RESUMEN

Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish. Using CRISPR-Cas12a knockout and rescue assays, we found that knocking out many human coPARSE-lncRNAs led to cell proliferation defects, which were subsequently rescued by predicted zebrafish homologs. Knocking down coPARSE-lncRNAs in zebrafish embryos caused severe developmental delays that were rescued by human homologs. Furthermore, we verified that human, mouse and zebrafish coPARSE-lncRNA homologs tend to bind similar RBPs with their conserved functions relying on specific RBP-binding sites. Overall, our study demonstrates a comprehensive approach for studying the functional conservation of lncRNAs and implicates numerous lncRNAs in regulating vertebrate physiology.


Asunto(s)
ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pez Cebra/genética , Genómica , Genoma
5.
Appl Environ Microbiol ; 79(23): 7476-81, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24077701

RESUMEN

Temperate bacteriophage WO is a model system for studying tripartite interactions among viruses, bacteria, and eukaryotes, especially investigations of the genomic stability of obligate intracellular bacteria. Few WO genomes exist because of the difficulty in isolating viral DNA from eukaryotic hosts, and most reports are by-products of Wolbachia sequencing. Only one partial genome of a WO phage has been determined directly from isolated particles. We determine the complete genome sequence of prophage WO (WOSol) in Wolbachia strain wSol, which infects the fig wasp Ceratosolen solmsi (Hymenoptera: Chalcidoidea), by high-efficiency thermal asymmetric interlaced PCR. The genome of WOSol is highly degenerated and disrupted by a large region (14,267 bp) from Wolbachia. Consistent with previous molecular studies of multiple WO genomes, the genome of WOSol appears to have evolved by single nucleotide mutations and recombinations.


Asunto(s)
Bacteriófagos/genética , Virus ADN/genética , ADN Viral/química , ADN Viral/genética , Genoma Viral , Profagos/genética , Wolbachia/virología , Animales , Virus ADN/aislamiento & purificación , Ficus/parasitología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Avispas/microbiología , Wolbachia/aislamiento & purificación
6.
Nat Commun ; 13(1): 5114, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042231

RESUMEN

The combined use of transcriptome and translatome as indicators of gene expression profiles is usually more accurate than the use of transcriptomes alone, especially in cell types governed by translational regulation, such as mammalian oocytes. Here, we developed a dual-omics methodology that includes both transcriptome and translatome sequencing (T&T-seq) of single-cell oocyte samples, and we used it to characterize the transcriptomes and translatomes during mouse and human oocyte maturation. T&T-seq analysis revealed distinct translational expression patterns between mouse and human oocytes and delineated a sequential gene expression regulation from the cytoplasm to the nucleus during human oocyte maturation. By these means, we also identified a functional role of OOSP2 inducing factor in human oocyte maturation, as human recombinant OOSP2 induced in vitro maturation of human oocytes, which was blocked by anti-OOSP2. Single-oocyte T&T-seq analyses further elucidated that OOSP2 induces specific signaling pathways, including small GTPases, through translational regulation.


Asunto(s)
Oogénesis , Transcriptoma , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Mamíferos/genética , Ratones , Oocitos/metabolismo , Oogénesis/genética
7.
Cell Res ; 31(5): 495-516, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33623109

RESUMEN

Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP-RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not capture their condition-dependent nature. Here, after profiling transcriptome-wide in vivo RNA secondary structures in seven cell types, we developed PrismNet, a deep learning tool that integrates experimental in vivo RNA structure data and RBP binding data for matched cells to accurately predict dynamic RBP binding in various cellular conditions. PrismNet results for 168 RBPs support its utility for both understanding CLIP-seq results and largely extending such interaction data to accurately analyze additional cell types. Further, PrismNet employs an "attention" strategy to computationally identify exact RBP-binding nucleotides, and we discovered enrichment among dynamic RBP-binding sites for structure-changing variants (riboSNitches), which can link genetic diseases with dysregulated RBP bindings. Our rich profiling data and deep learning-based prediction tool provide access to a previously inaccessible layer of cell-type-specific RBP-RNA interactions, with clear utility for understanding and treating human diseases.


Asunto(s)
Aprendizaje Profundo , ARN , Sitios de Unión , Humanos , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcriptoma
8.
Genome Biol ; 14(12): R141, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24359812

RESUMEN

BACKGROUND: Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question. RESULTS: The genome size of the fig wasp C. solmsi is typical of insects, but has undergone dramatic reductions of gene families involved in environmental sensing and detoxification. The streamlined chemosensory ability reflects the overwhelming importance of females finding trees of their only host species, Ficus hispida, during their fleeting adult lives. Despite long-distance dispersal, little need exists for detoxification or environmental protection because fig wasps spend nearly all of their lives inside a largely benign host. Analyses of transcriptomes in females and males at four key life stages reveal that the extreme anatomical sexual dimorphism of fig wasps may result from a strong bias in sex-differential gene expression. CONCLUSIONS: Our comparison of the C. solmsi genome with other insects provides new insights into the evolution of obligate mutualism. The draft genome of the fig wasp, and transcriptomic comparisons between both sexes at four different life stages, provide insights into the molecular basis for the extreme anatomical sexual dimorphism of this species.


Asunto(s)
Ficus/parasitología , Genoma de los Insectos , Análisis de Secuencia de ADN/métodos , Avispas/embriología , Avispas/genética , Animales , Evolución Molecular , Femenino , Ficus/fisiología , Regulación del Desarrollo de la Expresión Génica , Tamaño del Genoma , Masculino , Filogenia , Caracteres Sexuales , Simbiosis , Avispas/clasificación , Avispas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA