RESUMEN
Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) globally1-7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections and the temporal windows of the introduction of SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that community transmission of SARS-CoV-2 was likely to have been present in several areas of Europe and the USA by January 2020, and estimate that by early March, only 1 to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2, with possible introductions and transmission events as early as December 2019 to January 2020. We find a heterogeneous geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across US states and 0.19% to 13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.
Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Modelos Epidemiológicos , SARS-CoV-2/aislamiento & purificación , Viaje en Avión/estadística & datos numéricos , COVID-19/mortalidad , COVID-19/virología , China/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Europa (Continente)/epidemiología , Humanos , Densidad de Población , Factores de Tiempo , Estados Unidos/epidemiologíaRESUMEN
Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics.
Asunto(s)
Comportamiento del Consumidor/estadística & datos numéricos , Gripe Humana/epidemiología , Supermercados , Biología Computacional , Humanos , Incidencia , Italia/epidemiología , Estaciones del AñoRESUMEN
Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems.
Asunto(s)
COVID-19/epidemiología , Gripe Humana , Modelos Estadísticos , Vigilancia de la Población , SARS-CoV-2 , Humanos , Incidencia , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/mortalidad , Pandemias , Estados Unidos , VirologíaRESUMEN
After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.
Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/epidemiología , COVID-19/terapia , Hospitalización/estadística & datos numéricos , Modelos Estadísticos , Política Pública , Vacunación/estadística & datos numéricos , COVID-19/mortalidad , COVID-19/prevención & control , Predicción , Humanos , Máscaras , Distanciamiento Físico , Estados Unidos/epidemiologíaRESUMEN
Hydrophobic organic compounds (HOCs) tend to be associated with suspended particles in surface aquatic systems, however, the bioavailability of HOCs on suspended particles to fish is not well understood. In this study, a passive dosing device was used to control the freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs) including fluoranthene and pyrene, and the influence of particle-associated PAHs on their bioaccumulation by zebrafish was investigated. The results showed that, when the Cfree of PAHs were kept constant, the presence of suspended particles did not significantly affect the steady state of PAH bioaccumulation in zebrafish tissues excluding head and digestive tracts, suggesting that the bioaccumulation steady state was controlled by the freely dissolved concentrations of PAHs. However, suspended particles promoted the uptake and elimination rate constants of PAHs in zebrafish body excluding head and digestive tracts. The uptake rate constants with 0.5â¯g/L suspended particles were approximately twice of those without suspended particles, and the body burden in zebrafish increased by 16.4% -â¯109.3% for pyrene and 21.8% -â¯490.4% for fluoranthene during the first 8-d exposure. This was due to the reasons that suspended particles could be ingested, and part of PAHs associated with them could be desorbed in digestive tract and absorbed by the zebfrafish, leading to the enhancement of uptake rates of PAHs in zebfrafish. The findings obtained from this study indicate that PAHs on suspended particles are partly bioavailable to zebrafish and particle ingestion is an important route in PAH bioaccumulation. Therefore, it is important to consider the bioavailability of HOCs on suspended particles to improve ecological risk assessment.
Asunto(s)
Fluorenos/metabolismo , Pirenos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Disponibilidad Biológica , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pez Cebra/metabolismoRESUMEN
Many studies have investigated bioaccumulation and metabolism of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms. However, lack of studies investigated both processes simultaneously, and the interaction between these two processes is less understood so far. This study investigated the bioaccumulation kinetics of PAHs and metabolic enzyme activities, including total cytochrome P450 (CYPs) and total superoxide dismutase (T-SOD), in zebrafish. Mature zebrafish were exposed to the mixture of phenanthrene and anthracene under constant concentration maintained by passive dosing systems for 16days. The results showed that PAH concentrations in zebrafish experienced a peak value after exposure for 1.5days, and then decreased gradually. The bioaccumulation equilibrium was achieved after exposure for 12days. Both of the uptake rate constants (ku) and the elimination rate constants (ke) decreased after the peak value. The variation of PAH concentrations and metabolic enzyme activities in zebrafish had an interactive relationship. The activities of CYPs and T-SOD increased initially with the increase of PAH concentrations, but decreased to the lowest state when PAH concentrations reached the peak value. When the bioaccumulation equilibrium of PAHs was achieved, CYPs and T-SOD activities also reached the steady state. In general, CYPs and T-SOD activities were activated after exposure to PAHs. The decrease of PAH concentrations in zebrafish after the peak value may be attributed to the great drop of ku and the variation of CYPs activities. This study suggests that an interactive relationship exists between bioaccumulation kinetics of PAHs and metabolic enzyme activities in aquatic organisms.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo , Animales , CinéticaRESUMEN
Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.
RESUMEN
Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).
RESUMEN
Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , IncertidumbreRESUMEN
In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2/genética , Estados Unidos/epidemiología , VacunaciónRESUMEN
Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.
RESUMEN
Given the narrowness of the initial testing criteria, the SARS-CoV-2 virus spread through cryptic transmission in January and February, setting the stage for the epidemic wave experienced in March and April, 2020. We use a global metapopulation epidemic model to provide a mechanistic understanding of the global dynamic underlying the establishment of the COVID-19 pandemic in Europe and the United States (US). The model is calibrated on international case introductions at the early stage of the pandemic. We find that widespread community transmission of SARS-CoV-2 was likely in several areas of Europe and the US by January 2020, and estimate that by early March, only 1 - 3 in 100 SARS-CoV-2 infections were detected by surveillance systems. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 with possible importation and transmission events as early as December, 2019. We characterize the resulting heterogeneous spatio-temporal spread of SARS-CoV-2 and the burden of the first COVID-19 wave (February-July 2020). We estimate infection attack rates ranging from 0.78%-15.2% in the US and 0.19%-13.2% in Europe. The spatial modeling of SARS-CoV-2 introductions and spreading provides insights into the design of innovative, model-driven surveillance systems and preparedness plans that have a broader initial capacity and indication for testing.
RESUMEN
Mathematical and computational modeling approaches are increasingly used as quantitative tools in the analysis and forecasting of infectious disease epidemics. The growing need for realism in addressing complex public health questions is, however, calling for accurate models of the human contact patterns that govern the disease transmission processes. Here we present a data-driven approach to generate effective population-level contact matrices by using highly detailed macro (census) and micro (survey) data on key socio-demographic features. We produce age-stratified contact matrices for 35 countries, including 277 sub-national administratvie regions of 8 of those countries, covering approximately 3.5 billion people and reflecting the high degree of cultural and societal diversity of the focus countries. We use the derived contact matrices to model the spread of airborne infectious diseases and show that sub-national heterogeneities in human mixing patterns have a marked impact on epidemic indicators such as the reproduction number and overall attack rate of epidemics of the same etiology. The contact patterns derived here are made publicly available as a modeling tool to study the impact of socio-economic differences and demographic heterogeneities across populations on the epidemiology of infectious diseases.
Asunto(s)
Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Modelos Estadísticos , Factores de Edad , Australia/epidemiología , Número Básico de Reproducción , China/epidemiología , Análisis por Conglomerados , Humanos , Gripe Humana/epidemiología , Gripe Humana/transmisión , Encuestas y CuestionariosRESUMEN
WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.
RESUMEN
Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the useful-ness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.2 to 4.9 million, with possibly as many as 8.1 million cases, up to 26 times greater than the cumulative confirmed cases of about 311,000. Extending our method to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 6.0 to 10.3 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems.
RESUMEN
We use a global metapopulation transmission model to study the establishment of sustained and undetected community transmission of the COVID-19 pandemic in the United States. The model is calibrated on international case importations from mainland China and takes into account travel restrictions to and from international destinations. We estimate widespread community transmission of SARS-CoV-2 in February, 2020. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 in the West and East Coast metropolitan areas that could have been seeded as early as late-December, 2019. For most of the continental states the largest contribution of imported infections arrived through domestic travel flows.
RESUMEN
Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.
Asunto(s)
Betacoronavirus , Enfermedades Transmisibles Importadas/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Cuarentena , Viaje , COVID-19 , China/epidemiología , Enfermedades Transmisibles Importadas/prevención & control , Enfermedades Transmisibles Importadas/transmisión , Simulación por Computador , Infecciones por Coronavirus/prevención & control , Brotes de Enfermedades , Humanos , Incidencia , Internacionalidad , Modelos Estadísticos , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2RESUMEN
Motivated by the rapid spread of a novel coronavirus (2019-nCoV) in Mainland China, we use a global metapopulation disease transmission model to project the impact of both domestic and international travel limitations on the national and international spread of the epidemic. The model is calibrated on the evidence of internationally imported cases before the implementation of the travel quarantine of Wuhan. By assuming a generation time of 7.5 days, the reproduction number is estimated to be 2.4 [90% CI 2.2-2.6]. The median estimate for number of cases before the travel ban implementation on January 23, 2020 is 58,956 [90% CI 40,759 - 87,471] in Wuhan and 3,491 [90% CI 1,924 - 7,360] in other locations in Mainland China. The model shows that as of January 23, most Chinese cities had already received a considerable number of infected cases, and the travel quarantine delays the overall epidemic progression by only 3 to 5 days. The travel quarantine has a more marked effect at the international scale, where we estimate the number of case importations to be reduced by 80% until the end of February. Modeling results also indicate that sustained 90% travel restrictions to and from Mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.