Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 30(21): 38077-38094, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258380

RESUMEN

A silicon waveguide with reverse-biased p-i-n junction is used to experimentally demonstrate all-optical regeneration of non-return-to-zero (NRZ) on-off keying (OOK) signal based on four-wave mixing. The silicon waveguide allows a high conversion efficiency of -12 dB. The 0.22 dB (1.1 dB) quality (Q) factor and 0.74 dB (6.3 dB) extinction ratio (ER) improvements on average are achieved for 100 Gb/s (50 Gb/s) NRZ OOK signal regeneration at different receiving powers via the optimal match between the input signal optical power and input-output transfer curve. To the best of our knowledge, this silicon-based all-optical regenerator exhibits superior regeneration performance, including large ER and Q factor improvements, and the highest regeneration speed of NRZ OOK signal, and it has wide applications in 5 G/6 G networks.

2.
Opt Express ; 29(18): 28725-28740, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614996

RESUMEN

Microwave photonic filters (MPFs) with only one ultra-narrow passband are able to provide high frequency selectivity and wide spectral range, and they are of great importance in radio-frequency (RF) signal processing. However, currently all MPFs are limited by trade-offs between key parameters such as spectral resolution and range, tunability, and stability. Here, we report the first demonstration of a single passband MPF with unprecedented performance including ultrahigh spectral resolution of 650 kHz, 0-40 GHz spectral range, and high stability of center frequency drifting within ±50 kHz. This record performance is accomplished by breaking the amplitude equality of a phase-modulated signal via a Brillouin dynamic grating (BDG) which has an ultra-narrow reflection spectrum of sub-MHz. The results point to new ways of creating high performance microwave photonic systems, such as satellite and mobile communications, radars, and remote-sensing systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA