Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Physiol ; 601(17): 3905-3920, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431690

RESUMEN

Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.


Asunto(s)
Células de Purkinje , Receptores de Glutamato Metabotrópico , Masculino , Animales , Ratones , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cerebelo/metabolismo , Proteínas Portadoras/metabolismo , Sinapsis/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
J Neurosci ; 37(47): 11335-11352, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29054881

RESUMEN

Group 1 metabotropic glutamate receptors (mGlu1/5s) are critical to synapse formation and participate in synaptic LTP and LTD in the brain. mGlu1/5 signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases, but underlying mechanisms for its modulation are not clear. Here, we report that transferrin receptor 1 (TFR1), a transmembrane protein of the clathrin complex, modulates the trafficking of mGlu1 in cerebellar Purkinje cells (PCs) from male mice. We show that conditional knock-out of TFR1 in PCs does not affect the cytoarchitecture of PCs, but reduces mGlu1 expression at synapses. This regulation by TFR1 acts in concert with that by Rab8 and Rab11, which modulate the internalization and recycling of mGlu1, respectively. TFR1 can bind to Rab proteins and facilitate their expression at synapses. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-LTP and PC intrinsic excitability are not affected. Finally, we demonstrate that PC ablation of TFR1 impairs motor coordination, but does not affect social behaviors in mice. Together, these findings underscore the importance of TFR1 in regulating mGlu1 trafficking and suggest that mGlu1- and mGlu1-dependent parallel fiber-LTD are associated with regulation of motor coordination, but not autistic behaviors.SIGNIFICANCE STATEMENT Group 1 metabotropic glutamate receptor (mGlu1/5) signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases. Recent work suggests that altered mGlu1 signaling in Purkinje cells (PCs) may be involved in not only motor learning, but also autistic-like behaviors. We find that conditional knock-out of transferrin receptor 1 (TFR1) in PCs reduces synaptic mGlu1 by tethering Rab8 and Rab11 in the cytosol. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-PC LTP and PC intrinsic excitability are intact. Motor coordination is impaired, but social behaviors are normal in TFR1flox/flox;pCP2-cre mice. Our data reveal a new regulator for trafficking and synaptic expression of mGlu1 and suggest that mGlu1-dependent LTD is associated with motor coordination, but not autistic-like behaviors.


Asunto(s)
Trastorno Autístico/genética , Movimiento , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Transferrina/metabolismo , Animales , Trastorno Autístico/metabolismo , Células Cultivadas , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Células de Purkinje/fisiología , Receptores de Transferrina/genética , Conducta Social , Proteínas de Unión al GTP rab/metabolismo
3.
Cell Rep ; 42(12): 113559, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100348

RESUMEN

Patients with Rett syndrome suffer from a loss-of-function mutation of the Mecp2 gene, which results in various symptoms including autistic traits and motor deficits. Deletion of Mecp2 in the brain mimics part of these symptoms, but the specific function of methyl-CpG-binding protein 2 (MeCP2) in the cerebellum remains to be elucidated. Here, we demonstrate that Mecp2 deletion in Purkinje cells (PCs) reduces their intrinsic excitability through a signaling pathway comprising the small-conductance calcium-activated potassium channel PTP1B and TrkB, the receptor of brain-derived neurotrophic factor. Aberration of this cascade, in turn, leads to autistic-like behaviors as well as reduced vestibulocerebellar motor learning. Interestingly, increasing activity of TrkB in PCs is sufficient to rescue PC dysfunction and abnormal motor and non-motor behaviors caused by Mecp2 deficiency. Our findings highlight how PC dysfunction may contribute to Rett syndrome, providing insight into the underlying mechanism and paving the way for rational therapeutic designs.


Asunto(s)
Trastorno Autístico , Síndrome de Rett , Humanos , Animales , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Células de Purkinje/metabolismo , Trastorno Autístico/genética , Transducción de Señal , Modelos Animales de Enfermedad
4.
Elife ; 122023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37159499

RESUMEN

The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.


Asunto(s)
Potenciación a Largo Plazo , Sinapsis , Animales , Ratones , Cerebelo/fisiología , Factores de Intercambio de Guanina Nucleótido , Potenciación a Largo Plazo/fisiología , Neuronas , Células de Purkinje , Sinapsis/fisiología
5.
Neuroscience ; 462: 320-327, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32450293

RESUMEN

The cerebellum has long been conceptualized to control motor learning and motor coordination. However, increasing evidence suggests its roles in cognition and emotion behaviors. In particular, the cerebellum has been recognized as one of key brain regions affected in autism spectrum disorder (ASD). To better understand the contribution of the cerebellum in ASD pathogenesis, we here discuss recent behavioral, genetic, and molecular studies from the human and mouse models. In addition, we raise several questions that need to be investigated in future studies from the point view of cerebellar dysfunction, cerebro-cerebellar connectivity and ASD.


Asunto(s)
Trastorno del Espectro Autista , Enfermedades Cerebelosas , Encéfalo , Cerebelo , Cognición , Humanos
6.
Front Cell Dev Biol ; 8: 627146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33718348

RESUMEN

The cerebellum is conceptualized as a processor of complex movements. Many diseases with gene-targeted mutations, including Fahr's disease associated with the loss-of-function mutation of meningioma expressed antigen 6 (Mea6), exhibit cerebellar malformations, and abnormal motor behaviors. We previously reported that the defects in cerebellar development and motor performance of Nestin-Cre;Mea6 F/F mice are severer than those of Purkinje cell-targeted pCP2-Cre;Mea6 F/F mice, suggesting that Mea6 acts on other types of cerebellar cells. Hence, we investigated the function of Mea6 in cerebellar granule cells. We found that mutant mice with the specific deletion of Mea6 in granule cells displayed abnormal posture, balance, and motor learning, as indicated in footprint, head inclination, balanced beam, and rotarod tests. We further showed that Math1-Cre;Mea6 F/F mice exhibited disrupted migration of granule cell progenitors and damaged parallel fiber-Purkinje cell synapses, which may be related to impaired intracellular transport of vesicular glutamate transporter 1 and brain-derived neurotrophic factor. The present findings extend our previous work and may help to better understand the pathogenesis of Fahr's disease.

7.
Nat Neurosci ; 23(9): 1041-1043, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31570863

RESUMEN

It was recently reported that a magnetic actuator, Magneto, can control neuronal firings at magnetic strength as low as 50 mT (ref. 1), offering an exciting non-invasive approach to manipulating neuronal activity in a variety of research and clinical applications. We investigated whether Magneto can be used to manipulate electric properties of Purkinje cells in the cerebellum, which play critical roles in motor learning and emotional behaviors2. Surprisingly, we found that the application of a magnetic field did not change any electrical properties of Purkinje cells expressing Magneto, raising serious doubt about the previous claim that Magneto can readily be used as a magnetic actuator1.


Asunto(s)
Cerebelo , Células de Purkinje , Fenómenos Magnéticos
8.
Front Cell Neurosci ; 13: 250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244610

RESUMEN

Meningioma expressed antigen 6 (MEA6), also called cutaneous T cell lymphoma-associated antigen 5 (cTAGE5), was initially found in tumor tissues. MEA6 is located in endoplasmic reticulum (ER) exit sites and regulates the transport of collagen, very low density lipoprotein, and insulin. It is also reported that MEA6 might be related to Fahr's syndrome, which comprises neurological, movement, and neuropsychiatric disorders. Here, we show that MEA6 is critical to cerebellar development and motor performance. Mice with conditional knockout of MEA6 (Nestin-Cre;MEA6F/F) display smaller sizes of body and brain compared to control animals, and survive maximal 28 days after birth. Immunohistochemical and behavioral studies demonstrate that these mutant mice have defects in cerebellar development and motor performance. In contrast, PC deletion of MEA6 (pCP2-Cre;MEA6F/F) causes milder phenotypes in cerebellar morphology and motor behaviors. While pCP2-Cre;MEA6F/F mice have normal lobular formation and gait, they present the extensive self-crossing of PC dendrites and damaged motor learning. Interestingly, the expression of key molecules that participates in cerebellar development, including Slit2 and brain derived neurotrophic factor (BDNF), is significantly increased in ER, suggesting that MEA6 ablation impairs ER function and thus these proteins are arrested in ER. Our study provides insight into the roles of MEA6 in the brain and the pathogenesis of Fahr's syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA