Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neoplasma ; 70(2): 251-259, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37005956

RESUMEN

Platinum-based chemotherapy is the primary treatment option for advanced non-small cell lung cancer (NSCLC) patients without a driver gene mutation, but its efficacy is still modest. Through a potential synergistic effect, autologous cellular immunotherapy (CIT) composed of cytokine-induced killer (CIK), natural killer (NK), and T cells might enhance it. NK cells exhibited in vitro cytotoxicity toward lung cancer cells (A549 cells) following platinum therapy. Using flow cytometry, the expression of MICA, MICB, DR4, DR5, CD112, and CD155 on lung cancer cells was assessed. In this retrospective cohort study, there were included 102 previously untreated stage IIIB/IV NSCLC patients ineligible for tyrosine kinase inhibitor (TKI) target therapy who received either chemotherapy alone (n=75) or combination therapy (n=27). The cytotoxicity of NK cells for A549 cells was increased obviously and a time-dependent enhancement of this effect was also observed. After platinum therapy, the levels of MICA, MICB, DR4, DR5, CD112, and CD155 on the surface of A549 cells were increased. In the combination group, the median PFS was 8.3 months, compared to 5.5 months in the control group (p=0.042); the median overall survival was 18.00 months, compared to 13.67 months in the combined group (p=0.003). The combination group had no obvious immune-related adverse effects. The combination of NK cells with platinum showed synergistic anticancer effects. Combining the two strategies increased survival with minor adverse effects. Incorporating CIT into conventional chemotherapy regimens may improve NSCLC treatment. However, additional evidence will require multicenter randomized controlled trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Platino (Metal)/uso terapéutico , Estudios Retrospectivos , Inmunoterapia
2.
World J Gastroenterol ; 19(30): 5006-10, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946608

RESUMEN

AIM: To apply a new, integrated technique for visualizing bacterial genomes to identify novel pathogenicity islands in Helicobacter pylori (H. pylori). METHODS: A genomic barcode imaging method (converting frequency matrices to grey-scale levels) was designed to visually distinguish origin-specific genomic regions in H. pylori. The complete genome sequences of the six H. pylori strains published in the National Center for Biotechnological Information prokaryotic genome database were scanned, and compared to the genome barcodes of Escherichia coli (E. coli) O157:H7 strain EDL933 and a random nucleotide sequence. The following criteria were applied to identify potential pathogenicity islands (PAIs): (1) barcode distance distinct from that of the general background; (2) length greater than 10000 continuous base pairs; and (3) containing genes with known virulence-related functions (as determined by PfamScan and Blast2GO). RESULTS: Comparison of the barcode images generated for the 26695, HPAG1, J99, Shi470, G27 and P12 H. pylori genomes with those for the E. coli and random sequence controls revealed that H. pylori genomes contained fewer anomalous regions. Among the H. pylori-specific continuous anomalous regions (longer than 20 kbp in each strain's genome), two fit the criteria for identifying candidate PAIs. The bioinformatic-based functional analyses revealed that one of the two anomalous regions was the known pathogenicity island cag-PAI, this finding also served as proof-of-principle for the utility of the genomic barcoding approach for identifying PAIs, and characterized the other as a novel PAI, which was designated as tfs3-PAI. Furthermore, the cag-PAI and tfs3-PAI harbored genes encoding type IV secretion system proteins and were predicted to have potential for functional synergy. CONCLUSION: Genomic barcode imaging represents an effective bioinformatic-based approach for scanning bacterial genomes, such as H. pylori, to identify candidate PAIs.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Bacteriano/análisis , Genoma Bacteriano , Islas Genómicas , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Biología Computacional , Bases de Datos Genéticas , Escherichia coli/genética , Genotipo , Helicobacter pylori/clasificación , Fenotipo , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA