Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 16(40): e2003597, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32930498

RESUMEN

Metal-organic frameworks (MOFs) have attracted enormous research interest as precursors/templates to prepare catalytic materials. However, the effect of structural isomerism of MOFs on the catalytic performance has rarely been studied. In this contribution, two topologically different Ce-benzene tricarboxylate (Ce-BTC) based on the same ligands and metal centers (viz., "MOF isomers") are prepared and used as porous supports to load Pt nanoparticles (NPs), which shows distinct differences in porosities and loading behaviors of Pt. Strikingly, an irreversible framework transformation from tetragonal Ce-BTC to monoclinic isomer is observed during water soaking treatment. The results give clear evidence that Pt/CeO2 derived from tetragonal Ce-BTC inclines to produce more Pt0 and smaller Pt NPs, which eventually improve the catalytic performance for CO oxidation (T100 = 80 °C). In situ diffuse reflectance infrared Fourier transform spectroscopy analyses demonstrate that the adsorbed CO-Pt0 is the dominant intermediate for CO oxidation, rather than CO-Ptσ + at the low temperature. Furthermore, MOF isomers based on the same structural units are also found in other Ln-MOFs, such as Er-BTC, Eu-BTC, Y-BTC, and Ce/Y-BTC. Overall, this study affords a fundamental understanding of the effect of MOF structural isomers on the catalytic performance of the derived composites.

2.
ACS Appl Mater Interfaces ; 16(13): 16186-16202, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516696

RESUMEN

The efficient and economic conversion of CO2 and renewable H2 into methanol has received intensive attention due to growing concern for anthropogenic CO2 emissions, particularly from fossil fuel combustion. Herein, we have developed a novel method for preparing Ni/In2O3 nanocatalysts by using porous MIL-68(In) and nickel(II) acetylacetonate (Ni(acac)2) as the dual precursors of In2O3 and Ni components, respectively. Combined with in-depth characterization analysis, it was revealed that the utilization of MIL-68(In) as precursors favored the good distribution of Ni nanoparticles (∼6.2 nm) on the porous In2O3 support and inhibited the metal sintering at high temperatures. The varied catalyst fabrication parameters were explored, indicating that the designed Ni/In2O3 catalyst (Ni content of 5 wt %) exhibited better catalytic performance than the compared catalyst prepared using In(OH)3 as a precursor of In2O3. The obtained Ni/In2O3 catalyst also showed excellent durability in long-term tests (120 h). However, a high Ni loading (31 wt %) would result in the formation of the Ni-In alloy phase during the CO2 hydrogenation which favored CO formation with selectivity as high as 69%. This phenomenon is more obvious if Ni and In2O3 had a strong interaction, depending on the catalyst fabrication methods. In addition, with the aid of in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory (DFT) calculations, the Ni/In2O3 catalyst predominantly follows the formate pathway in the CO2 hydrogenation to methanol, with HCOO* and *H3CO as the major intermediates, while the small size of Ni particles is beneficial to the formation of formate species based on DFT calculation. This study suggests that the Ni/In2O3 nanocatalyst fabricated using metal-organic frameworks as precursors can effectively promote CO2 thermal hydrogenation to methanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA