RESUMEN
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Asunto(s)
Adenosina , ARN , Humanos , Animales , Sistema InmunológicoRESUMEN
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1+ ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
RESUMEN
Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.
Asunto(s)
Antígenos de Diferenciación/metabolismo , Neoplasias del Colon/inmunología , ADN Mitocondrial/inmunología , Células Dendríticas/inmunología , Proteínas de la Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Anticuerpos Bloqueadores/uso terapéutico , Antígeno CD47/inmunología , Antígeno CD47/metabolismo , Células Cultivadas , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Reactividad Cruzada , Modelos Animales de Enfermedad , Humanos , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Escape del TumorRESUMEN
There is growing evidence that tumour neoantigens have important roles in generating spontaneous antitumour immune responses and predicting clinical responses to immunotherapies1,2. Despite the presence of numerous neoantigens in patients, complete tumour elimination is rare, owing to failures in mounting a sufficient and lasting antitumour immune response3,4. Here we show that durable neoantigen-specific immunity is regulated by mRNA N6-methyadenosine (m6A) methylation through the m6A-binding protein YTHDF15. In contrast to wild-type mice, Ythdf1-deficient mice show an elevated antigen-specific CD8+ T cell antitumour response. Loss of YTHDF1 in classical dendritic cells enhanced the cross-presentation of tumour antigens and the cross-priming of CD8+ T cells in vivo. Mechanistically, transcripts encoding lysosomal proteases are marked by m6A and recognized by YTHDF1. Binding of YTHDF1 to these transcripts increases the translation of lysosomal cathepsins in dendritic cells, and inhibition of cathepsins markedly enhances cross-presentation of wild-type dendritic cells. Furthermore, the therapeutic efficacy of PD-L1 checkpoint blockade is enhanced in Ythdf1-/- mice, implicating YTHDF1 as a potential therapeutic target in anticancer immunotherapy.
Asunto(s)
Adenosina/análogos & derivados , Adenosina/metabolismo , Células Dendríticas/inmunología , Neoplasias/inmunología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Antígeno B7-H1/metabolismo , Sitios de Unión , Linfocitos T CD8-positivos/inmunología , Catepsinas/antagonistas & inhibidores , Catepsinas/biosíntesis , Catepsinas/genética , Reactividad Cruzada/inmunología , Células Dendríticas/enzimología , Femenino , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Biosíntesis de Proteínas , Proteínas/genética , ARN Mensajero/química , Proteínas de Unión al ARN/genética , Transcriptoma/genéticaRESUMEN
In this Letter, a citation to 'Fig. 1e' has been corrected to 'Fig. 1d' in the sentence starting "By contrast, the anti-tumour response ". This has been corrected online.
RESUMEN
We present a highly sensitive and selective chemical labeling and capture approach for genome-wide profiling of 5-hydroxylmethylcytosine (5hmC) using DNA isolated from â¼1,000 cells (nano-hmC-Seal). Using this technology, we assessed 5hmC occupancy and dynamics across different stages of hematopoietic differentiation. Nano-hmC-Seal profiling of purified Tet2-mutant acute myeloid leukemia (AML) murine stem cells allowed us to identify leukemia-specific, differentially hydroxymethylated regions that harbor known and candidate disease-specific target genes with differential 5hmC peaks compared to normal stem cells. The change of 5hmC patterns in AML strongly correlates with differential gene expression, demonstrating the importance of dynamic alterations of 5hmC in regulating transcription in AML. Together, covalent 5hmC labeling offers an effective approach to study and detect DNA methylation dynamics in in vivo disease models and in limited clinical samples.
Asunto(s)
5-Metilcitosina/análogos & derivados , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Promielocítica Aguda/genética , 5-Metilcitosina/metabolismo , Animales , Células Cultivadas , Biología Computacional , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Dioxigenasas , Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes , Estudio de Asociación del Genoma Completo , Leucemia Promielocítica Aguda/metabolismo , Ratones , Mutación , Nanotecnología , Proteínas Proto-Oncogénicas/genética , Factores de Tiempo , Tirosina Quinasa 3 Similar a fms/genéticaRESUMEN
Hematopoietic stem cells (HSC) give rise to the cells of the blood system over the whole lifespan. N6-methyladenosine (m6A), the most prevalent RNA modification, modulates gene expression via the processes of "writing" and "reading". Recent studies showed that m6A "writer" genes (Mettl3 and Mettl14) play an essential role in HSC. However, which reader deciphers the m6A modification to modulate HSC remains unknown. In this study, we observed that dysfunction of Ythdf3 and Ccnd1 severely impaired the reconstitution capacity of HSC, which phenocopies Mettl3-deficient HSC. Dysfunction of Ythdf3 and Mettl3 results in a translational defect of Ccnd1. Ythdf3 and Mettl3 regulate HSC by transmitting m6A RNA methylation on the 5' untranslated region of Ccnd1. Enforced Ccnd1 expression completely rescued the defect of Ythdf3-/- HSC and partially rescued Mettl3-compromised HSC. Taken together, this study identified, for the first time, that Ccnd1 is the target of METTL3 and YTHDF3 to transmit the m6A RNA methylation signal and thereby regulate the reconstitution capacity of HSC.
Asunto(s)
Adenosina , Metiltransferasas , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 5' , Adenosina/genética , Adenosina/metabolismo , Ciclina D1/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Metiltransferasas/genética , ARN Mensajero/genéticaRESUMEN
Accumulating evidence indicates that the efficacy of tumor-targeted therapies relies on the host immune response, including targeted small-molecule and antibody approaches that were not previously thought to have an immune component. Here, we review the current understanding of how targeted therapies on tumor cells could have a major impact on the immune response, and how this relates to the therapeutic efficacy of these approaches. In this context, we evaluate different strategies that combine targeted therapies with immunotherapy approaches, and discuss past and ongoing clinical trials. We highlight gaps in knowledge, and argue that significant progress for combined therapies will require a better understanding of the complex interactions between immune cells, the tumor, and the tumor microenvironment (TME) in different cancer settings.
Asunto(s)
Inmunidad Adaptativa , Inmunoterapia/métodos , Terapia Molecular Dirigida , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Ensayos Clínicos como Asunto , Terapia Combinada , Humanos , Neoplasias/inmunología , Linfocitos T Citotóxicos/trasplante , Microambiente TumoralRESUMEN
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Asunto(s)
Diferenciación Celular , Células T Asesinas Naturales , Diferenciación Celular/genética , Metiltransferasas , Proteínas , Timocitos , Animales , RatonesRESUMEN
The ever-increasing understanding of the complexity of factors and regulatory layers that contribute to immune evasion facilitates the development of immunotherapies. However, the diversity of malignant tumors limits many known mechanisms in specific genetic and epigenetic contexts, manifesting the need to discover general driver genes. Here, we have identified the m6A demethylase FTO as an essential epitranscriptomic regulator utilized by tumors to escape immune surveillance through regulation of glycolytic metabolism. We show that FTO-mediated m6A demethylation in tumor cells elevates the transcription factors c-Jun, JunB, and C/EBPß, which allows the rewiring of glycolytic metabolism. Fto knockdown impairs the glycolytic activity of tumor cells, which restores the function of CD8+ T cells, thereby inhibiting tumor growth. Furthermore, we developed a small-molecule compound, Dac51, that can inhibit the activity of FTO, block FTO-mediated immune evasion, and synergize with checkpoint blockade for better tumor control, suggesting reprogramming RNA epitranscriptome as a potential strategy for immunotherapy.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/inmunología , Regulación Neoplásica de la Expresión Génica , Vigilancia Inmunológica , Neoplasias/inmunología , Animales , Línea Celular Tumoral , Femenino , Melanoma Experimental , Ratones , Ratones Endogámicos C57BLRESUMEN
Tumor-associated macrophages (TAMs) can dampen the antitumor activity of T cells, yet the underlying mechanism remains incompletely understood. Here, we show that C1q+ TAMs are regulated by an RNA N6-methyladenosine (m6A) program and modulate tumor-infiltrating CD8+ T cells by expressing multiple immunomodulatory ligands. Macrophage-specific knockout of an m6A methyltransferase Mettl14 drives CD8+ T cell differentiation along a dysfunctional trajectory, impairing CD8+ T cells to eliminate tumors. Mettl14-deficient C1q+ TAMs show a decreased m6A abundance on and a higher level of transcripts of Ebi3, a cytokine subunit. In addition, neutralization of EBI3 leads to reinvigoration of dysfunctional CD8+ T cells and overcomes immunosuppressive impact in mice. We show that the METTL14-m6A levels are negatively correlated with dysfunctional T cell levels in patients with colorectal cancer, supporting the clinical relevance of this regulatory pathway. Thus, our study demonstrates how an m6A methyltransferase in TAMs promotes CD8+ T cell dysfunction and tumor progression.
Asunto(s)
Adenosina/análogos & derivados , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Metiltransferasas/metabolismo , Metiltransferasas/fisiología , Neoplasias/patología , Macrófagos Asociados a Tumores/metabolismo , Adenosina/química , Animales , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Citocinas/metabolismo , Femenino , Humanos , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Citocinas/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/patologíaRESUMEN
N 6-methyladenosine (m6A) regulates stability and translation of messenger RNA (mRNA) in various biological processes. In this work, we show that knockout of the m6A writer Mettl3 or the nuclear reader Ythdc1 in mouse embryonic stem cells increases chromatin accessibility and activates transcription in an m6A-dependent manner. We found that METTL3 deposits m6A modifications on chromosome-associated regulatory RNAs (carRNAs), including promoter-associated RNAs, enhancer RNAs, and repeat RNAs. YTHDC1 facilitates the decay of a subset of these m6A-modified RNAs, especially elements of the long interspersed element-1 family, through the nuclear exosome targeting-mediated nuclear degradation. Reducing m6A methylation by METTL3 depletion or site-specific m6A demethylation of selected carRNAs elevates the levels of carRNAs and promotes open chromatin state and downstream transcription. Collectively, our results reveal that m6A on carRNAs can globally tune chromatin state and transcription.
Asunto(s)
Adenosina/análogos & derivados , Cromatina/metabolismo , Metiltransferasas/metabolismo , ARN Nuclear/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Metilación , Metiltransferasas/genética , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , ARN Mensajero/metabolismoRESUMEN
Macrophage phagocytosis of tumor cells mediated by CD47-specific blocking antibodies has been proposed to be the major effector mechanism in xenograft models. Here, using syngeneic immunocompetent mouse tumor models, we reveal that the therapeutic effects of CD47 blockade depend on dendritic cell but not macrophage cross-priming of T cell responses. The therapeutic effects of anti-CD47 antibody therapy were abrogated in T cell-deficient mice. In addition, the antitumor effects of CD47 blockade required expression of the cytosolic DNA sensor STING, but neither MyD88 nor TRIF, in CD11c+ cells, suggesting that cytosolic sensing of DNA from tumor cells is enhanced by anti-CD47 treatment, further bridging the innate and adaptive responses. Notably, the timing of administration of standard chemotherapy markedly impacted the induction of antitumor T cell responses by CD47 blockade. Together, our findings indicate that CD47 blockade drives T cell-mediated elimination of immunogenic tumors.