Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407380, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887170

RESUMEN

Flexible zinc-air batteries are leading power sources for next-generation smart wearable electronics. However, flexible zinc-air batteries suffer from the highly-corrosive safety risk and limited lifespan due to the absence of reliable solid-state electrolytes (SSEs). Herein, a single-anion conductive SSE with high-safety is constructed by incorporating a highly amorphous dual-cation ionomer into a robust hybrid matrix of functional carbon nanotubes and polyacrylamide polymer. The as-fabricated SSE obtains dual-penetrating ionomer-polymer networks and hierarchical ionic highways, which contribute to mechanical robustness with 1200 % stretchability, decent water uptake and retention, and superhigh ion conductivity of 245 mS ⋅ cm-1 and good Zn anode reversibility. Remarkably, the flexible solid-state zinc-air batteries delivers a high specific capacity of 764 mAh ⋅ g-1 and peak power density of 152 mW ⋅ cm-2 as well as sustains excellent cycling stability for 1050 cycles (350 hours). This work offers a new paradigm of OH- conductors and broadens the definition and scope of OH- conductors.

2.
Angew Chem Int Ed Engl ; : e202407909, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993054

RESUMEN

In-situ construction of solid electrolyte interfaces (SEI) is an effective strategy to enhance the reversibility of zinc (Zn) anodes. However, in-situ SEI to afford high reversibility under high current density conditions (≥ 20 mA cm-2) is highly desired yet extremely challenging. Herein, we propose a dual reaction strategy of spontaneous electrostatic reaction and electrochemical decomposition for the in-situ construction of SEI, which is composed of organic-rich upper layer and inorganic-rich inner layer. Particularly, in-situ SEI performs as "growth binder" at small current density and "orientation regulator" at high current density, which significantly suppresses side reactions and dendrite growth. The in-situ SEI affords the record-breaking reversibility of Zn anode under practical conditions, Zn//Zn symmetric cells can stably cycle for over 1300 h and 400 h at current densities of 50 mA cm-2 and 100 mA cm-2, respectively, showcasing an exceptional cumulative capacity of 67.5 Ah cm-2. Furthermore, the practicality of this in-situ SEI is verified in Zn//PANI pouch cells with high mass loading of 25.48 mg cm-2. This work provides a universal strategy to design advanced SEI for practical Zn-ion batteries.

3.
Angew Chem Int Ed Engl ; 63(21): e202401974, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38470070

RESUMEN

Despite many additives have been reported for aqueous zinc ion batteries, steric-hindrance effect of additives and its correlation with Zn2+ solvation structure have been rarely reported. Herein, large-sized sucrose biomolecule is selected as a paradigm additive, and steric-hindrance electrolytes (STEs) are developed to investigate the steric-hindrance effect for solvation structure regulation. Sucrose molecules do not participate in Zn2+ solvation shell, but significantly homogenize the distribution of solvated Zn2+ and enlarge Zn2+ solvation shell with weakened Zn2+-H2O interaction due to the steric-hindrance effect. More importantly, STEs afford the water-shielding electric double layer and in situ construct the organic and inorganic hybrid solid electrolyte interface, which effectively boost Zn anode reversibility. Remarkably, Zn//NVO battery presents high capacity of 3.9 mAh ⋅ cm-2 with long cycling stability for over 650 cycles at lean electrolyte of 4.5 µL ⋅ mg-1 and low N/P ratio of 1.5, and the stable operation at wide temperature (-20 °C~+40 °C).

4.
Angew Chem Int Ed Engl ; : e202410422, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039835

RESUMEN

Zinc ion batteries (ZIBs) encounter interface issues stemming from the water-rich electrical double layer (EDL) and unstable solid-electrolyte interphase (SEI). Herein, we propose the dynamic EDL and self-repairing hybrid SEI for practical ZIBs via incorporating the horizontally-oriented dual-site additive. The rearrangement of distribution and molecular configuration of additive constructs the robust dynamic EDL under different interface charges. And, a self-repairing organic-inorganic hybrid SEI is constructed via the electrochemical decomposition of additive. The dynamic EDL and self-repairing SEI accelerate interfacial kinetics, regulate deposition and suppress side reactions in the both stripping and plating during long-term cycles, which affords high reversibility for 500 h at 42.7% depth of discharge or 50 mA·cm-1. Remarkably, Zn//NVO full cells deliver the impressive cycling stability for 10000 cycles with 100% capacity retention at 3 A·g-1 and for over 3000 cycles even at lean electrolyte (7.5 µL·mAh-1) and high loading (15.26 mg·cm-2). Moreover, effectiveness of this strategy is further demonstrated in the low-temperature full cell (-30 oC).

5.
Immunol Invest ; 52(6): 717-734, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37326141

RESUMEN

BACKGROUND: Childhood asthma is a major global health concern. ADP-ribosylation factor 6 (ARF6) is a low-molecular-weight GTPase; however, its role in childhood asthma remains unclear. METHODS: Ovalbumin (OVA)-challenged neonatal mice and transforming growth factor-ß1 (TGF-ß1)-induced BEAS-2B cells were used as in vivo and in vitro models of childhood asthma, respectively. RESULTS: Upon OVA stimulation, ARF6 expression was upregulated in the lung tissue. Neonatal mice administered SehinH3 (an ARF6 inhibitor) exhibited improved pulmonary pathological injury, along with reduced inflammatory cell infiltration in the lungs and cytokine release in bronchial alveolar lavage fluid and serum (interleukin [IL]-3, IL-5, IL-13, IgE, and OVA-specific IgE). SehinH3 treatment restrained epithelial - mesenchymal transition (EMT) in the lungs of asthmatic mice, as evidenced by increased E-cadherin and decreased N-cadherin and α-smooth muscle actin expression. Different TGF-ß1 exposures to BEAS-2B cells induced a time- and dose-dependent increase in ARF6 expression in vitro. Upon TGF-ß1 stimulation, ARF6 knockdown repressed EMT and SehinH3 treatment caused similar results in BEAS-2B cells. The transcription factor E2F8 is involved in diverse biological functions and its increased expression was confirmed in vivo and in vitro. Dual-luciferase assays confirmed that E2F8 binds to the ARF6 promoter and promotes its transcriptional activity. In vitro results revealed that E2F8 silencing suppressed EMT, whereas rescue experiments showed that ARF6 overexpression partly reversed these phenomena. CONCLUSION: Our study showed that ARF6 is associated with childhood asthma progression and may be positively regulated by E2F8. These results provide insight into the pathogenesis and treatment of childhood asthma.


Asunto(s)
Asma , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Ovalbúmina , Factor 6 de Ribosilación del ADP , Transición Epitelial-Mesenquimal , Asma/metabolismo , Inflamación , Inmunoglobulina E , Factores de Transcripción E2F/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
6.
Acta Pharmacol Sin ; 44(1): 178-188, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35676532

RESUMEN

Activation of vitamin D receptor (VDR) in cancer-associated fibroblasts (CAFs) has been implicated in hesitating tumor progression and chemoresistance of several human malignancies. Yet, the role of VDR in CAF-induced chemotherapy resistance of gastric cancer (GC) cells remains elusive. In this study we first conducted immunohistochemistry analysis on tissue microarrays including 88 pairs of GC and normal mucosa samples, and provided clinical evidence that VDR was mainly expressed in gastric mucous cells but almost invisible in CAFs, and VDR expression was negatively correlated with malignant clinical phenotype and advanced stages, low VDR expression confers to poor overall survival rate of patients with GC. In a co-culture system of primary CAFs and cancer cells, we showed that treatment of HGC-27 and AGS GC cells with VDR ligand calcipotriol (Cal, 500 nM) significantly inhibited CAF-induced oxaliplatin resistance. By using RNA-sequencing and Human Cytokine Antibody Array, we demonstrated that IL-8 secretion from CAFs induced oxaliplatin resistance via activating the PI3K/AKT pathway in GC, whereas Cal treatment greatly attenuated the tumor-supportive effect of CAF-derived IL-8 on GC cells. Taken together, this study verifies the specific localization of VDR in GC tissues and demonstrates that activation of VDR abrogates CAF-derived IL-8-mediated oxaliplatin resistance in GC via blocking PI3K/Akt signaling, suggesting vitamin D supplementation as a potential strategy of enhancing the anti-tumor effect of chemotherapy in GC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/metabolismo , Oxaliplatino/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacología , Interleucina-8/uso terapéutico , Línea Celular Tumoral
7.
Int Endod J ; 56(12): 1534-1549, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37698901

RESUMEN

AIM: Fat mass and obesity-associated (FTO) protein, the first discovered N6-methyladenine (m6A) demethylase, played positive roles in bone formation. In this study, the aim was to investigate the function and potential mechanism of Fto in dentine formation. METHODOLOGY: In vivo model, postnatal 12-day (PN12), 4-week-old (4 wk), 6-week-old (6 wk) healthy male C57BL/6J were randomly divided into Fto knockout (Fto-/- ) mice and wild-type (WT) littermates according to their genotypes, with 3-5 mice in each group. The mandibles of Fto-/- mice and WT control littermates were isolated for analysis by micro-computed tomography (micro-CT), 3-dimensional reconstruction and Haematoxylin-eosin (HE) staining. In vitro, mouse dental papilla cells (mDPCs) and human dental stem pulp cells (hDPSCs) were cultured with odontogenetic medium to evaluate differentiation capacity; expression levels of odontoblastic related genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). The inclusion levels of Runt-related transcription factor 2 (RUNX2) exon 5 in mDPCs and hDPSCs were detected by semiquantitative real-time polymerase chain reaction (RT-PCR). The RNA binding motif protein 4 (RBM4) m6A site was verified through m6A methylated RNA immunoprecipitation (MeRIP) and the stability of RBM4 mRNA influenced by FTO knockdown was measured by mRNA stability assay. Differences with p values < .05 were regarded as statistically significant. RESULTS: We discovered that Fto-/- mice showed significant dentine formation defects characterized by widened pulp cavity, enlarged pulp-tooth volume ratio, thinned dentine and pre-dentine layer of root (p < .05). Fto-/- mDPCs and FTO-silencing hDPSCs not only exhibited insufficient mineralization ability and decreased expression levels of odontoblastic mineralization related genes (p < .05), but showed significantly reduced Runx2 exon 5 inclusion level (p < .05). FTO knockdown increased the m6A level of RBM4 and destabilized the mRNA of RBM4, thus contributing to the reduced RBM4 expression level. Moreover, Rbm4 overexpression in Fto-/- mDPCs can partly restore Runx2 exon 5 inclusion level and the differentiation ability disrupted by Fto knockout. CONCLUSION: Thus, within the limitations of this study, the data suggest that FTO promotes odontoblastic differentiation during dentine formation by stabilizing RBM4 mRNA to promote RUNX2 exon 5 inclusion.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Odontoblastos , Animales , Humanos , Masculino , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Pulpa Dental , Dentina/metabolismo , Exones/genética , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Microtomografía por Rayos X
8.
BMC Cancer ; 22(1): 404, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418066

RESUMEN

BACKGROUND: In this study, we performed a molecular evaluation of primary pancreatic adenocarcinoma (PAAD) based on the comprehensive analysis of energy metabolism-related gene (EMRG) expression profiles. METHODS: Molecular subtypes were identified by nonnegative matrix clustering of 565 EMRGs. An overall survival (OS) predictive gene signature was developed and internally and externally validated based on three online PAAD datasets. Hub genes were identified in molecular subtypes by weighted gene correlation network analysis (WGCNA) coexpression algorithm analysis and considered as prognostic genes. LASSO cox regression was conducted to establish a robust prognostic gene model, a four-gene signature, which performed better in survival prediction than four previously reported models. In addition, a novel nomogram constructed by combining clinical features and the 4-gene signature showed high-confidence clinical utility. According to gene set enrichment analysis (GSEA), gene sets related to the high-risk group participate in the neuroactive ligand receptor interaction pathway. CONCLUSIONS: In summary, EMRG-based molecular subtypes and prognostic gene models may provide a novel research direction for patient stratification and trials of targeted therapies.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/genética , Metabolismo Energético/genética , Humanos , Procesos Neoplásicos , Neoplasias Pancreáticas/genética , Pronóstico , Neoplasias Pancreáticas
9.
Acta Pharmacol Sin ; 43(1): 157-166, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33758355

RESUMEN

Long noncoding RNAs (lncRNAs) are involved in a variety of cancers, but the role of LncRNA DUBR in lung adenocarcinoma (LUAD), the most prevalent form of lung cancer, remains unclear. In this study we investigated the expression of DUBR in LUAD to ascertain its association with the clinical pathology and prognosis of LUAD. Analysis of mRNA expression in The Cancer Genome Atlas (TCGA) LUAD database and in-house LUAD cohort (n = 94) showed that DUBR was significantly downregulated in LUAD, and was associated with poor prognosis. In LUAD cell lines (H1975, A549), overexpression of DUBR significantly suppressed the migration and invasion of the LUAD cells. We demonstrated that c-Myc could bind to the promoter of DUBR, and transcriptionally suppressed its expression. Knockdown of c-Myc almost completely blocked the invasion and migration of LUAD cells, whereas knockdown of DUBR partially rescued c-Myc-knockdown suppressed cell migration and invasion. Furthermore, DUBR overexpression significantly increased the expression of a downstream protein of DUBR, zinc finger, and BTB domain containing 11 (ZBTB11), in H1975 and A549 cells; knockdown of ZBTB11 partially rescued the DUBR-overexpression suppressed cell migration and invasion; knockdown of c-Myc significantly upregulated the expression of ZBTB11 in LUAD cells. Finally, we revealed that DUBR/ZBTB11 axis suppressed oxidative phosphorylation in LUAD cells. In short, we demonstrate that c-Myc/DUBR/ZBTB11 axis suppresses migration and invasion of LUAD by attenuating cell oxidative phosphorylation, which provides new insights into the regulatory mechanism of DUBR.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , ARN Largo no Codificante/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Dominio BTB-POZ , Movimiento Celular , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Pulmonares/diagnóstico , Estructura Molecular , Fosforilación Oxidativa , ARN Largo no Codificante/genética , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
10.
Chem Soc Rev ; 50(2): 986-1029, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33226395

RESUMEN

Microporous framework membranes such as metal-organic framework (MOF) membranes and covalent organic framework (COF) membranes are constructed by the controlled growth of small building blocks with large porosity and permanent well-defined micropore structures, which can overcome the ubiquitous tradeoff between membrane permeability and selectivity; they hold great promise for the enormous challenging separations in energy and environment fields. Therefore, microporous framework membranes are endowed with great expectations as next-generation membranes, and have evolved into a booming research field. Numerous novel membrane materials, versatile manipulation strategies of membrane structures, and fascinating applications have erupted in the last five years. First, this review summarizes and categorizes the microporous framework membranes with pore sizes lower than 2 nm based on their chemistry: inorganic microporous framework membranes, organic-inorganic microporous framework membranes, and organic microporous framework membranes, where the chemistry, fabrications, and differences among these membranes have been highlighted. Special attention is paid to the membrane structures and their corresponding modifications, including pore architecture, intercrystalline grain boundary, as well as their diverse control strategies. Then, the separation mechanisms of membranes are covered, such as diffusion-selectivity separation, adsorption-selectivity separation, and synergetic adsorption-diffusion-selectivity separation. Meanwhile, intricate membrane design to realize synergistic separation and some emerging mechanisms are highlighted. Finally, the applications of microporous framework membranes for precise gas separation, liquid molecule separation, and ion sieving are summarized. The remaining challenges and future perspectives in this field are discussed. This timely review may provide genuine guidance on the manipulation of membrane structures and inspire creative designs of novel membranes, promoting the sustainable development and steadily increasing prosperity of this field.

11.
Angew Chem Int Ed Engl ; 61(23): e202117703, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35233896

RESUMEN

The construction of safe and environmentally-benign solid-state electrolytes (SSEs) with intrinsic hydroxide ion-conduction for flexible zinc-air batteries is highly desirable yet extremely challenging. Herein, hierarchically nanostructured CCNF-PDIL SSEs with reinforced concrete architecture are constructed by nanoconfined polymerization of dual-cation ionic liquid (PDIL, concrete) within a robust three-dimensional porous cationic cellulose nanofiber matrix (CCNF, reinforcing steel), where plenty of penetrating ion-conductive channels are formed and undergo dynamic self-rearrangement under different hydrated levels. The CCNF-PDIL SSEs synchronously exhibit good flexibility, mechanical robustness, superhigh ion conductivity of 286.5 mS cm-1 , and decent water uptake. The resultant flexible solid-state zinc-air batteries deliver a high-power density of 135 mW cm-2 , a specific capacity of 775 mAh g-1 and an ultralong cycling stability with continuous operation of 240 hours for 720 cycles, far outperforming those of the state-of-the-art solid-state batteries. The marriage of biomaterials with the diversity of ionic liquids creates enormous opportunities to construct advanced SSEs for solid-state batteries.

12.
Oral Dis ; 27(6): 1356-1365, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32485020

RESUMEN

Apical periodontitis (AP) is a prevalent infectious and inflammatory disorder that involves inflammation of periapical tissues and the disintegration of alveolar bone. AP may eventually lead to tooth loss if not timely treated. This disease is caused by pathogenic bacteria in the necrotic pulps and root canals, thereby triggering responses from the innate and adaptive immune system of the periapical tissues. Regulatory T (Treg) cells play a major role in maintaining immune homoeostasis and immunological self-tolerance; however, these only account for roughly 5%-10% of human peripheral CD4+ T cells. Several studies have examined the possible role and underlying mechanism of Treg cells in different inflammatory and autoimmune disorders to facilitate the development of novel treatments for these diseases. Recent studies have indicated that Treg cells may gather at the sites of infection, thus limiting the generation of immune responses and bone resorption in the periapical area. This review will summarize studies regarding the presence and regulatory role of Treg cells in AP.


Asunto(s)
Resorción Ósea , Periodontitis Periapical , Humanos , Inflamación , Periodontitis Periapical/terapia , Linfocitos T Reguladores
13.
Angew Chem Int Ed Engl ; 60(11): 5864-5870, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33170995

RESUMEN

The implementation of mixed matrix membranes (MMMs) for sub-angstrom scale gas separations remains a grand challenge. Herein, a series of analogous mixed matrix membrane (AMMMs) were constructed via molecular-level hybridization by utilizing a reactive ionic liquid (RIL) as the continuous phase and graphene quantum dots (GQD) as nanofiller for sub-angstrom scale ethylene/ethane (0.416 nm/0.443 nm) separation. With a small number of GQDs (3.5 wt%) embedded in GQD/RIL AMMMs, ethylene permeability soared by 3.1-fold, and ethylene/ethane selectivity simultaneously boosted by nearly 60 % and reached up to 99.5, which outperformed most previously reported state-of-the-art membranes. Importantly, the interfacial pathway structure was visualized and their self-assembly mechanism was revealed, where the non-covalent interactions between RIL and GQDs induced the local arrangement of IL chains to self-assemble into plenty of compact and superfast interfacial pathways, contributing to the combination of superhigh permeability and selectivity.

14.
J Natl Compr Canc Netw ; 18(5): 582-589, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380463

RESUMEN

BACKGROUND: Biomarkers for chemotherapy efficacy in non-small cell lung cancer (NSCLC) are lacking. This retrospective study assesses the association between blood-based tumor mutational burden (bTMB) and clinical benefit of chemotherapy. METHODS: Clinical and targeted next-generation sequencing data from the OAK trial (training set; n=318) and POPLAR trial (validation set; n=106) in the docetaxel arm were analyzed. The cutoff value of bTMB for outcome prediction was determined based on a time-dependent receiver operating characteristic curve in the training set, and propensity score matching (PSM) was conducted. The primary outcome was overall survival (OS). Durable clinical benefit (DCB) was defined as OS lasting >12 months. Interaction between treatment and bTMB was assessed in the combined set. RESULTS: A lower bTMB was observed in patients with DCB compared with no durable benefit, and in those with a partial response and stable disease compared with progressive disease. The optimized cutoff value of bTMB for predicting OS was 7 single-nucleotide variants per megabase. In the training set, a low bTMB was significantly associated with longer OS and progression-free survival (PFS). The prognostic value of bTMB was confirmed in the validation set and PSM set. The interaction between bTMB and treatment was significant for PFS (interaction P=.043) in the combined set. Mutations in KEAP1 were associated with high bTMB and a lack of benefit from chemotherapy. CONCLUSIONS: Low bTMB is associated with a survival advantage in patients with NSCLC treated with docetaxel, suggesting the prognostic and predictive potential of bTMB for determining chemotherapy efficacy.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Docetaxel/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Docetaxel/farmacología , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Mutación , Valor Predictivo de las Pruebas , Pronóstico , Análisis de Supervivencia
15.
Angew Chem Int Ed Engl ; 58(39): 13969-13975, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31361387

RESUMEN

A BN membrane with a distinct nanoconfinement effect toward efficient ethylene/ethane separation is presented. The horizontal and inclined self-assembly of 2D BN nanosheets endow the BN membrane with abundant percolating nanochannels, and these nanochannels are further decorated by reactive ionic liquids (RILs) to tailor their sizes as well as to achieve nanoconfinement effect. The noncovalent interactions between RIL and BN nanosheets favor the ordered alignment of the cations and anions of RIL within BN nanochannels, which contributes to a fast and selective ethylene transport. The resultant membranes exhibit an unprecedented separation performance with superhigh C2 H4 permeance of 138 GPU and C2 H4 /C2 H6 selectivity of 128 as well as remarkably improved long-term stability for 180 h, outperforming reported state-of-the-art membranes.

17.
Gastric Cancer ; 19(1): 107-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25627474

RESUMEN

BACKGROUND: Pituitary tumor-transforming gene-1 (PTTG1) is a transcription factor that can affect transcriptional activity, angiogenesis, and cell senescence. We examined PTTG1 mRNA and protein expression in gastric cancer (GC) cell lines and tissues to determine its value as a biomarker for GC diagnosis and therapy. METHODS: PTTG1 mRNA expression from 78 GC cases and paired adjacent normal mucosa (PCR cohort) as well as from five gastric cell lines was assessed using qRT-PCR. Nuclear and cytoplasmic RNA were extracted from two gastric cell lines to determine PTTG1 mRNA localization. PTTG1 protein expression from 98 GC cases, their paired adjacent normal mucosa, and 23 gastric intraepithelial neoplasia (GIN) cases was examined using immunohistochemistry (IHC cohort). The correlation between PTTG1 mRNA and protein expression and GC clinicopathological parameters was analyzed. RESULTS: PTTG1 mRNA expression in GC tissues and cell lines was significantly increased compared with adjacent normal gastric mucosa and normal gastric mucous cell lines (p < 0.05). PTTG1 expression was nuclear and cytoplasmic, with higher cytoplasmic expression. PTTG1 immunostaining significantly differed in GC (95.66 ± 20.65), GIN (84.00 ± 34.16), and normal adjacent mucosa (28 ± 22.25) (p < 0.001). Multivariate Cox regression analysis revealed that PTTG1 mRNA and protein expression are independent prognostic factors for GC patient survival. CONCLUSION: Our results suggest that PTTG1 is a promising target for GC diagnosis and therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Securina/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Anciano , Línea Celular Tumoral , Células Epiteliales/patología , Femenino , Mucosa Gástrica/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , Securina/metabolismo , Neoplasias Gástricas/patología
18.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(2): 166-71, 2016 Feb.
Artículo en Zh | MEDLINE | ID: mdl-27078991

RESUMEN

OBJECTIVE: To evaluate clinical effect and safety of floating needle therapy and duloxetine in treating patients with persistent somatoform pain disorder (PSPD). METHODS: Totally 108 PSPD patients were randomly assigned to the floating needle treatment group, the duloxetine treatment group, and the placebo treatment group, 36 in each group. Patients in the floating needle treatment group received floating needle therapy and placebo. Those in the duloxetine treatment group received duloxetine and simulated floating needle therapy. Those in the placebo treatment group received the placebo and simulated floating needle therapy. All treatment lasted for six weeks. Efficacy and adverse reactions were evaluated using Simple McGill pain scale (SF-MPQ) and Treatment Emergent Symptom Scale (TESS) before treatment and immediately after treatment, as well as at the end of 1st, 2nd, 4th, and 6th week of treatment, respectively. Hamilton Depression Scale (HAMD, 17 items), Hamilton Anxiety Scale (HAMA) were assessed before treatment and at the end of 1st, 2nd, 4th, and 6th week of treatment, respectively. Patients in the floating needle treatment group and the duloxetine treatment group with the total reducing score rate of SF-MPQ in Pain Rating index (PRI) ≥ 50% after 6 weeks' treatment were involved in the follow-up study. RESULTS: (1) Compared with the same group before treatment, SF-MPQ score, HAMD score and HAMA total scores all decreased in all the three groups at the end of 1st, 2nd, 4th, and 6th week of treatment (P < 0.05, P < 0.01). Besides , each item of SF-MPQ significantly decreased immediately after treatment in the floating needle treatment group (P < 0.01). Compared with the placebo treatment group, SF-MPQ, HAMD, and HAMA total score in the floating needle treatment group significantly decreased after 1, 2, 4, and 6 weeks of treatment (P < 0.05, P < 0.01). SF-MPQ score, HAMD score and HAMA total score in the duloxetine treatment group also significantly decreased after 2, 4, and 6 weeks of treatment (P < 0.05, P < 0.01). (2) There were 3 patients (8.3%) who had adverse reactions in the floating needle treatment group, 17 (50.0%) in the duloxetine treatment group, and 7 (21.2%) in the placebo treatment group. Compared with the placebo treatment group, the incidence of adverse reaction increased in the duloxetine treatment group (χ² = 6.04, P < 0.05). Besides, it was higher in the duloxetine treatment group than in the floating needle treatment group (χ² = 14.9, P < 0.05). (3) There were 19 patients in the floating needle treatment group and 17 patients in the duloxetine treatment group involved in the follow-up study. Compared with 6 weeks after treatment, no significant difference was observed at 3 and 6 months after treatment in the score of SF-MPQ, HAMD, and HAMA in the floating needle treatment group and the duloxetine treatment group. No significant difference was observed between the two groups (P > 0.05). There were 5 patients (29.4%) who had adverse reactions in the duloxetine treatment group, and no adverse reactions were observed in the floating needle treatment group. The adverse reaction rate was significantly different between the two groups (χ² = 4.26, P < 0.05). CONCLUSIONS: Floating needle therapy and duloxetine were effective in treatment of patients with PSPD. However, floating needle therapy could relieve pain more rapidly than duloxetine, with obviously less adverse reactions.


Asunto(s)
Terapia por Acupuntura/métodos , Analgésicos/uso terapéutico , Clorhidrato de Duloxetina/uso terapéutico , Manejo del Dolor/métodos , Trastornos Somatomorfos/terapia , Trastornos de Ansiedad , Estudios de Seguimiento , Humanos , Agujas , Dolor , Dimensión del Dolor , Escalas de Valoración Psiquiátrica , Resultado del Tratamiento
19.
Lab Invest ; 95(1): 56-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384122

RESUMEN

Stathmin 1 (STMN1), a major microtubule-depolymerizing protein, is involved in cell cycle progression and cell motility. However, the clinical significance of STMN1 expression in non-small cell lung cancer (NSCLC) has not been determined. The expression pattern of STMN1 mRNA was analyzed by quantitative real-time PCR (qRT-PCR) in 37 cases of NSCLC and in the corresponding non-tumor tissue samples. Furthermore, immunohistochemistry was performed to detect STMN1 protein expression in 113 primary NSCLC tissues. The functional role of STMN1 in lung cancer cell lines was evaluated by small interfering RNA-mediated depletion followed by analyses of cell proliferation and invasion. We found that the STMN1 mRNA and protein levels in NSCLC tissues were significantly higher than those in the corresponding non-tumor tissues (P<0.001). In addition, increased STMN1 expression was correlated with poor tumor differentiation (P<0.001), large tumor size (P=0.022), advanced N stage (P=0.033), and advanced TNM stage (P<0.001). Kaplan-Meier analysis indicates that NSCLC patients with higher STMN1 expression showed significantly worse survival. Moreover, multivariate analysis indicates that higher STMN1 protein expression was an independent prognostic factor of disease-specific survival (HR 2.247, 95%CI 1.320-3.825, P=0.003). Finally, the knockdown of STMN1 in lung cancer cells resulted in a decrease in cellular proliferation and invasion. Our findings suggest that STMN1 may have an important role in NSCLC progression and could serve as a potential prognostic marker for patients with NSCLC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Estatmina/metabolismo , Secuencia de Bases , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Cartilla de ADN , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estatmina/genética
20.
Int J Cancer ; 137(6): 1269-78, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25765901

RESUMEN

Recently, long noncoding RNAs (lncRNAs) were demonstrated to play important regulatory roles in biological processes and cancer biology. However, the overall pathophysiological contribution of lncRNAs to gastric cancer (GC) remains largely unknown. In this study, differentially expressed lncRNAs in GC and paired adjacent normal tissue samples were identified by microarray and were validated using quantitative real-time polymerase chain reaction (qRT-PCR). One particular lncRNA, tumour suppressor candidate 7 (TUSC7), was analyzed in sequential large cohorts, and the Kaplan-Meier method with the log-rank test for comparisons was used to analyse the survival data. The results indicated that TUSC7 was downregulated in GC samples and was an independent prognostic indicator of disease-free survival (DFS) and disease-specific survival (DSS) in GC patients. Applying loss-of-function and gain-of-function approaches, we determined that TUSC7 suppressed tumour cell growth in vitro and in vivo. Furthermore, we showed that TUSC7 was a direct transcriptional target of p53 via interaction of p53 with the putative p53-response element in the upstream region of TUSC7. Finally, we demonstrated reciprocal repression between TUSC7 and miR-23b; in contrast to TUSC7, miR-23b promoted cell growth. The results indicated that TUSC7 is a p53-regulated tumour suppressor that acts in part by repressing miR-23b and that TUSC7 may be a key regulatory hub in GC.


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Proteínas Supresoras de Tumor/genética , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Células HEK293 , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA