Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985761

RESUMEN

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas , Transducción de Señal , Fosforilación , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Dominios Proteicos , Mutación
2.
Plant Cell ; 35(9): 3604-3625, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37325884

RESUMEN

Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.


Asunto(s)
Oryza , Catalasa/genética , Catalasa/metabolismo , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteína Fosfatasa 1/metabolismo , Tolerancia a la Sal/genética , Homeostasis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Circ Res ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229723

RESUMEN

BACKGROUND: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS: Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. TMT-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective lysine to arginine K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking lysine to glutamine K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 crotonylation. RESULTS: The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS: Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.

4.
Circ Res ; 132(2): 154-166, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36575984

RESUMEN

BACKGROUND: Hydrogen sulfide is a critical endogenous signaling molecule that exerts protective effects in the setting of heart failure. Cystathionine γ-lyase (CSE), 1 of 3 hydrogen-sulfide-producing enzyme, is predominantly localized in the vascular endothelium. The interaction between the endothelial CSE-hydrogen sulfide axis and endothelial-mesenchymal transition, an important pathological process contributing to the formation of fibrosis, has yet to be investigated. METHODS: Endothelial-cell-specific CSE knockout and Endothelial cell-CSE overexpressing mice were subjected to transverse aortic constriction to induce heart failure with reduced ejection fraction. Cardiac function, vascular reactivity, and treadmill exercise capacity were measured to determine the severity of heart failure. Histological and gene expression analyses were performed to investigate changes in cardiac fibrosis and the activation of endothelial-mesenchymal transition. RESULTS: Endothelial-cell-specific CSE knockout mice exhibited increased endothelial-mesenchymal transition and reduced nitric oxide bioavailability in the myocardium, which was associated with increased cardiac fibrosis, impaired cardiac and vascular function, and worsened exercise performance. In contrast, genetic overexpression of CSE in endothelial cells led to increased myocardial nitric oxide, decreased endothelial-mesenchymal transition and cardiac fibrosis, preserved cardiac and endothelial function, and improved exercise capacity. CONCLUSIONS: Our data demonstrate that endothelial CSE modulates endothelial-mesenchymal transition and ameliorate the severity of pressure-overload-induced heart failure, in part, through nitric oxide-related mechanisms. These data further suggest that endothelium-derived hydrogen sulfide is a potential therapeutic for the treatment of heart failure with reduced ejection fraction.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Disfunción Ventricular Izquierda , Ratones , Animales , Sulfuro de Hidrógeno/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Ratones Noqueados , Endotelio Vascular/metabolismo , Fibrosis
5.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572971

RESUMEN

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Asunto(s)
Fototerapia , Terapia Fototérmica , Hidrogeles/farmacología
6.
Opt Lett ; 49(17): 4891-4894, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207990

RESUMEN

We experimentally demonstrate a liquid crystal (LC)-integrated EIT metasurface for active THz polarization conversion and asymmetric transmission. By controlling the LC orientation under static magnetic field anchoring and an adjustable electric field, the device realizes the active control from the OFF state to the ON state, corresponding to the orthogonal polarization excitation modes of the EIT metasurface. Furthermore, based on the different polarization responses at forward and backward incidences, we achieve asymmetric transmission at the EIT peak and two nearby resonances, with its isolation actively manipulated by the external electric field. This study on dynamic polarization conversion and asymmetric transmission by a LC-integrated metasurface offers a promising route for active THz devices, applicable to THz communication, switching, and sensing systems.

7.
Circ Res ; 131(3): 222-235, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35701874

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Disfunción Ventricular Izquierda , Adenosina Trifosfato/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Insuficiencia Cardíaca/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Miocardio/metabolismo , Disfunción Ventricular Izquierda/metabolismo
8.
Biomacromolecules ; 25(6): 3554-3565, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729918

RESUMEN

Hydrogels are considered as a potential cartilage replacement material based on their structure being similar to natural cartilage, which are of great significance in repairing cartilage defects. However, it is difficult for the existing hydrogels to combine the high load bearing and low friction properties (37 °C) of cartilage through sample methods. Herein, we report a facile and new fabrication strategy to construct the PNIPAm/EYL hydrogel by using the macrophase separation of supersaturated N-isopropylacrylamide (NIPAm) monomer solution to promote the formation of liposomes from egg yolk lecithin (EYL) and asymmetric template method. The PNIPAm/EYL hydrogels possess a relatively high compressive strength (more than 12 MPa), fracture energy (9820 J/m2), good fatigue resistance, lubricating properties, and excellent biocompatibility. Compared with the PNIPAm hydrogel, the friction coefficient (COF 0.046) of PNIPAm/EYL hydrogel is reduced by 50%. More importantly, the COF (0.056) of PNIPAm/EYL hydrogel above lower critical solution temperature (LCST) does not increase significantly, exhibiting heat-tolerant lubricity. The finite element analysis further proves that PNIPAm/EYL hydrogel can effectively disperse the applied stress and dissipate energy under load conditions. This work not only provides new insights for the design of high-strength lubricating hydrogels but also lays a foundation for the treatment of cartilage injury as a substitute material.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Hidrogeles/química , Resinas Acrílicas/química , Animales , Calor , Lubricantes/química , Cartílago/química , Lecitinas/química , Fuerza Compresiva , Liposomas/química , Yema de Huevo/química , Materiales Biocompatibles/química
9.
Inorg Chem ; 63(6): 3075-3082, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38295520

RESUMEN

Herein, an unprecedented cadmium-based metal-organic framework (JNU-106) fabricated by utilizing pyrazole-functionalized tetraphenylethylene ligands (Py-TPE) and rod-shaped secondary building units is reported, possessing a new (3,3,3,6,6,8)-connected topological network. Thanks to the ingeniously designed intramolecular charge transfer behavior, which originates from the congruent coplanarity between Py and TPE, JNU-106 exhibits intense green luminescence with a quantum yield increased by 1.5 times. The phenomenon of remarkable fluorescence quenching of JNU-106 reveals that it possesses extremely high anti-interference performance, superior sensitivity, and dedicated selectivity toward tetracycline antibiotics (TCAs) in aqueous solutions, which are comparable to those of the state-of-the-art porous sensing compounds. Taking the theoretical calculations and experimental results into account, the luminescence quenching is mainly attributed to the internal filtration effect and the static quenching effect. Considering the portable and rapid performance of JNU-106-based testing strips for sensing TCAs, the fabricated JNU-106 provides an alternative for ecological monitoring and environmental governance.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38551441

RESUMEN

Objective: This study examines the dynamic changes of stress hormones, including insulin (INS), fasting blood glucose (FBG), glucagon (Glu), and cortisol (Cort), in trauma patients. By monitoring these changes and observing acute pressure injury (API) occurrences on the skin, the research analyzes the influence of stress hormones on API development in trauma patients. Methods: A prospective analysis involved 218 trauma patients admitted to a grade III-A general hospital in Wenzhou from April 2021 to June 2023. Among them, 44 cases developed API (API group), and 174 cases did not (control group). Levels of INS, Cort, Glu, and FBG were measured in both groups. Additionally, Abbreviated Injury Scale-Injury Severity Score (AIS-ISS) surveys and API severity assessments were conducted. Correlations between stress hormone levels and AIS-ISS were discussed. The predictive effects of AIS-ISS and stress hormones on API occurrence in trauma patients were analyzed using receiver operating characteristic (ROC) curves. The relationship between stress hormone levels and API severity was also observed. Results: Study's outcomes indicated distinct relationships between stress hormone levels and API occurrence in trauma patients. Specifically, INS demonstrated a negative correlation with AIS-ISS, highlighting its potential as a significant factor. Glu, Cort, and FBG revealed positive associations, emphasizing their roles in influencing API development (P < .05). The diagnostic efficacy of stress hormones in predicting API occurrence, as represented by the Area Under Curve (AUC) = 0.8100. Notably, within the API group, INS levels demonstrated a decline with worsening API. Conversely, Glu, Cort, and FBG exhibited increases in tandem with the aggravation of API symptoms (P < .05). Conclusions: This research suggests that assessing stress hormone levels in clinical settings can effectively predict API occurrence. Early testing could aid in the development of preventive or intervention measures, reducing the incidence and harm of API in trauma patients.

11.
Chem Biodivers ; 21(7): e202400832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38712949

RESUMEN

Two new cytochalasans, marcytoglobosins A (1) and B (2) were isolated from the marine sponge associated fungus Chaetomium globosum 162105, along with six known compounds (3-8). The complete structures of two new compounds were determined based on 1D/2D NMR and HR-MS spectroscopic analyses coupled with ECD calculations. All eight isolates were evaluated for their antibacterial activity. Among them, compounds 3-8 displayed antibacterial effects against Staphylococcus epidermidis, Bacillus thuringiensis, Pseudomonas syringae pv. Actinidiae, Vibrio alginolyticus, and Edwardsiella piscicida with minimum inhibitory concentration (MIC) values ranging from 10 to 25 µg/mL.


Asunto(s)
Antibacterianos , Chaetomium , Pruebas de Sensibilidad Microbiana , Poríferos , Chaetomium/química , Animales , Poríferos/microbiología , Poríferos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Citocalasinas/farmacología , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Conformación Molecular
12.
J Wound Care ; 33(Sup2a): x-xiii, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324424

RESUMEN

Treatment of soft tissue wounds with bone or tendon exposure remains a tough clinical challenge for surgeons. The current clinical approaches include various types of flap reconstruction and artificial dermis grafting as well as negative pressure wound therapy (NPWT), which are time-consuming and often result in graft failure or significant scarring. Concentrated growth factor (CGF) is a novel blood extract that contains many growth factors, platelets and fibrin to promote an orderly healing process. However, few reports have focused on wounds with bone or tendon exposure. We present a limited series and two specific cases of skin wound with bone or tendon exposed that received surgical debridement followed by CGF treatment. CGF appeared to facilitate wound closure effectively and also reduced scar formation. Our findings provide a novel therapeutic option for refractory wounds with bone or tendon exposure.


Asunto(s)
Terapia de Presión Negativa para Heridas , Traumatismos de los Tejidos Blandos , Humanos , Trasplante de Piel , Cicatrización de Heridas , Traumatismos de los Tejidos Blandos/terapia , Cicatriz/cirugía , Tendones/cirugía , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Resultado del Tratamiento
13.
J Asian Nat Prod Res ; 26(10): 1254-1260, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38945154

RESUMEN

A new steroid, 2a-oxa-2-oxo-5ß-hydroxy-3,4-dinor-24-methylcholesta-22E-ene (1), together with 10 known ones (2-11), was isolated from the marine sponge Cliona sp. The structures of these compounds were determined by the spectroscopic methods (UV, IR, MS, and NMR) and X-ray diffraction analysis. Compound 1 was the third example of 3,4-dinorsteroid with a hemiketal at C-5 that was isolated from the natural source. In addition, the antibacterial activities of these compounds were also evaluated. However, none of them exhibited significant inhibition effects.


Asunto(s)
Antibacterianos , Biología Marina , Poríferos , Animales , Poríferos/química , Estructura Molecular , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Esteroides/química , Esteroides/farmacología , Esteroides/aislamiento & purificación , Cristalografía por Rayos X
14.
J Asian Nat Prod Res ; 26(3): 328-333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37602427

RESUMEN

(+)- and (-)-Tedanine [(+)-1 and (-)-1], a pair of new enantiomeric indolone alkaloids, along with nine compounds (2-10) were isolated from the marine sponge Tedania sp. The structures of (+)-1 and (-)-1 including absolute configurations were determined by spectroscopic analysis and quantum chemical calculation. Compounds (+)-1 and (-)-1 were the first examples of indolone alkaloids isolated from this genus. In addition, the cytotoxic and antibacterial activities of these compounds were also evaluated.


Asunto(s)
Alcaloides , Antineoplásicos , Poríferos , Animales , Poríferos/química , Alcaloides/química , Antibacterianos/química , Antineoplásicos/química , Estructura Molecular
15.
Molecules ; 29(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257331

RESUMEN

Liver fibrosis is the initial pathological process of many chronic liver diseases. Targeting hepatic stellate cell (HSC) activation is an available strategy for the therapy of liver fibrosis. We aimed to explore the anti-liver fibrosis activity and potential mechanism of phomopsterone B (PB) in human HSCs. The results showed that PB effectively attenuated the proliferation of TGF-ß1-stimulated LX-2 cells in a concentration-dependent manner at doses of 1, 2, and 4 µM. Quantitative real-time PCR and Western blot assays displayed that PB significantly reduced the expression levels of α-SMA and collagen I/III. AO/EB and Hoechst33342 staining and flow cytometry assays exhibited that PB promoted the cells' apoptosis. Meanwhile, PB diminished the number of autophagic vesicles and vacuolated structures, and the LC3B fluorescent spots indicated that PB could effectively inhibit the accretion of autophagosomes in LX-2 cells. Moreover, rapamycin and MHY1485 were utilized to further investigate the effect of mTOR in autophagy and apoptosis. The results demonstrated that PB regulated autophagy and apoptosis via the mTOR-dependent pathway in LX-2 cells. In summary, this is the first evidence that PB effectively alleviates liver fibrosis in TGF-ß1-stimulated LX-2 cells, and PB may be a promising candidate for the prevention of liver fibrosis.


Asunto(s)
Autofagia , Factor de Crecimiento Transformador beta1 , Humanos , Cirrosis Hepática/tratamiento farmacológico , Autofagosomas , Apoptosis
16.
Zhonghua Nan Ke Xue ; 30(3): 254-260, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-39177393

RESUMEN

Gossypol is a natural product extracted from cotton seeds, roots and stems, once used as a male contraceptive and later found with an anti-tumor effect. Recent studies show that it has an antiviral effect after structurally modified. This review focuses on the status quo of present studies on the effects of gossypol and its derivatives in anti-reproduction and anti-PCa, with an introduction of the application of the new compounds obtained from structural modification of gossypol in the treatment of PCa.


Asunto(s)
Anticonceptivos Masculinos , Gosipol , Gosipol/farmacología , Gosipol/análogos & derivados , Masculino , Humanos , Anticonceptivos Masculinos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Reproducción/efectos de los fármacos , Animales
17.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3432-3440, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041115

RESUMEN

Molecular pharmacognosy as an emerging interdisciplinary subject based on molecular biology and Chinese materia medica aims to study the synthesis and molecular regulation of secondary metabolites in medicinal plants. Andrographis Herba, the dried aboveground part of Andrographis paniculata, has liver-protecting, bile secretion-promoting, heat-clearing, toxin-removing, antimicrobial, and anti-inflammatory effects. The quality instability caused by plant varieties, environment, and technology in the production of A. paniculata is a limiting factor for the sustainable development of this industry. Based on the research methods of molecular pharmacognosy and omics, the regulation of secondary metabolites of A. paniculata has become the key solution to the quality problems of A. paniculata. This paper summarized the recent research achievements in the molecular pharmacognosy of A. paniculata, including molecular identification of the resources, genetic diversity, multi-omics, biosynthesis of active compounds, and germplasm resource innovation, and prospected the future development trend in this field. In-depth research of molecular pharmacognosy of A. paniculata will provide more scientific and effective technical support for the development of its medicinal value, give new insights into the cultivation of new A. paniculata varieties, and promote the high-quality sustainable development of this industry.


Asunto(s)
Farmacognosia , Andrographis/química , Andrographis/genética , Medicamentos Herbarios Chinos/química , Plantas Medicinales/genética , Plantas Medicinales/química , Andrographis paniculata/genética , Andrographis paniculata/química , Andrographis paniculata/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 49(2): 379-388, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403314

RESUMEN

Andrographis paniculata is an important medicinal plant in the Lingnan region of China, which has the functions of clearing heat, removing toxins, and resisting bacteria and inflammation. The TCP gene family is a class of transcription factors that regulate plant growth, development, and stress response. In order to analysis the role of the TCP gene family under abiotic stress in A. paniculata, this study identified the TCP gene family of A. paniculata at the genome-wide level and analyzed its expression pattern in response to abiotic stress. The results showed that the A. paniculata TCP gene family had 23 members, with length of amino acid ranging from 136 to 508, the relative molecular mass between 14 854.71 and 55 944.90 kDa, and the isoelectric point between 5.67 and 10.39. All members were located in the nucleus and unevenly distributed on 13 chromosomes. Phylogenetic analysis classified them into three subfamilies: PCF, CIN and CYC/TB1. Gene structure and conserved motif analysis showed that most members of the TCP gene family contained motif 1, motif 2, motif 3 in the same order and 1-3 CDS. The analysis of promoter cis-acting elements showed that the transcriptional expression of the TCP gene family in A. paniculata might be induced by light, hormones, and adversity stress. In light of the expression pattern analysis and qRT-PCR verification, the expression of ApTCP4, ApTCP5, ApTCP6, and ApTCP11 involved in response by various abiotic stresses such as drought, high temperature, and MeJA. This study lays the foundation for in-depth exploration of the functions of A. paniculata TCP genes in response to abiotic stress.


Asunto(s)
Aminoácidos , Andrographis paniculata , Filogenia , China , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
19.
J Am Chem Soc ; 145(1): 277-287, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548022

RESUMEN

Redox signaling molecules include a number of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). These molecules work collectively in the regulation of many physiological processes. Understanding the crosstalk mechanisms in these signaling molecules is important but challenging. The development of donor compounds of ROS/RNS/RSS will aid the advances in this field. While many donors that can release one ROS/RNS/RSS have been developed, dual donors that can release two signaling species and facilitate their crosstalk studies are still very rare. Those limited examples lack the ability to precisely control the timing of two releases. In this work, a 2-methoxy-6-naphthacyl-derived tertiary SNO compound, Naph-SNO, was designed and evaluated as the dual donor for NO and H2S2. The 2-methoxy-6-naphthacyl structure was demonstrated to be a novel photoremovable protecting group that could directly uncage C-S bonds. Under the irradiation of lights with different wavelengths (visible or UV), Naph-SNO could release NO and H2S2 in a stepwise manner, or simultaneously (i.e., likely producing the crosstalk product HSNO/HSSNO). In addition, the release of payloads from the donor also produced an end product with blue fluorescence. Therefore, the release process could be easily monitored in "real time." This controllable photo-triggered release strategy has the potential to be used in the design of other RNS/RSS dual donors.


Asunto(s)
Transducción de Señal , Azufre , Especies Reactivas de Oxígeno , Preparaciones de Acción Retardada , Oxidación-Reducción , Azufre/química
20.
BMC Microbiol ; 23(1): 386, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053022

RESUMEN

BACKGROUND: There is a link between Helicobacter pylori (HP) infection and small intestinal bacterial overgrowth (SIBO) with nonspecific digestive symptoms. Nonetheless, whether HP infection is associated with SIBO in adults remains unclear. Based on a meta-analysis, we evaluated this relationship. RESULTS: Observational studies relevant to our research were identified by searching PubMed, Embase, the Cochrane Library, and the Web of Science. We evaluated between-study heterogeneity using the Cochrane Q test and estimated the I2 statistic. Random-effects models were used when significant heterogeneity was observed; otherwise, fixed-effects models were used. Ten datasets from eight studies, including 874 patients, were involved in the meta-analysis. It was shown that HP infection was related to a higher odds of SIBO (odds ratio [OR]: 1.82, 95% confidence interval: 1.29 to 2.58, p < 0.001) with mild heterogeneity (p for Cochrane Q test = 0.11, I2 = 7%). Subgroup analyses showed that HP infection was related to SIBO in young patients (mean age < 48 years, OR: 2.68, 95% CI: 1.67 to 4.28, p < 0.001; I2 = 15%) but not in older patients (mean age ≥ 48 years, OR: 1.15, 95% CI: 0.69 to 1.92, p < 0.60; I2 = 1%; p for subgroup difference = 0.02). Subgroup analyses further indicated that the association was not significantly affected by the country of study, comorbidities, exposure to proton pump inhibitors, or methods of evaluating HP infection and SIBO. CONCLUSIONS: HP infection may be related to SIBO in adults, which supports the detection of SIBO in patients with digestive symptoms and HP infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Adulto , Humanos , Persona de Mediana Edad , Intestino Delgado/microbiología , Inhibidores de la Bomba de Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA