RESUMEN
BACKGROUND: Converging data have suggested that monocytic inflammation and C-reactive protein (CRP) are biologically intertwined processes and are involved in diabetogenesis. This study aimed to investigate the association between systemic inflammation assessed by joint cumulative high-sensitivity C-reactive protein (CumCRP) and monocyte to high-density lipoprotein ratio (CumMHR) and incident type 2 diabetes (T2D) and their predictive value for T2D in a general population. METHODS: A total of 40,813 nondiabetic participants from a prospective real-life cohort (Kailuan Study, China) were followed biennially from 2010/2011 until December 31, 2020. Multivariable Cox regression analyses were conducted to evaluate the adjusted hazard ratios (aHRs) of incident diabetes. RESULTS: During a median follow-up of 7.98 (IQR: 5.74-8.87) years, 4848 T2D cases developed. CumMHR and CumCRP were alone or jointly associated with incident T2D after adjusting for potential confounders. Elevated CumMHR levels significantly increased the risk of incident diabetes in each CumCRP strata (P-interaction: 0.0278). Participants with concomitant elevations in CumMHR and CumCRP levels had the highest risk (aHR: 1.71, 95% CI 1.52-1.91) compared to both in the low strata. Notably, the coexposure-associated T2D risk was modified by age, sex, hypertension, dyslipidemia, and prediabetes status. C-statistics increased from 0.7377 to 0.7417 when CumMHR and CumCRP were added into the multivariable-adjusted model, with a net reclassification improvement (%) of 12.39 (9.39-15.37) (P < 0.0001). CONCLUSIONS: Cumulative hsCRP and MHR were both independently and jointly associated with an increased risk of T2D and their addition to established risk factors should improve risk prediction and reclassification of diabetes.
Asunto(s)
Proteína C-Reactiva , Diabetes Mellitus Tipo 2 , Humanos , Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estudios Prospectivos , Lipoproteínas HDL , Monocitos/metabolismo , Factores de Riesgo , Inflamación/complicacionesRESUMEN
BACKGROUND: Adiposity and elevated inflammation are two hallmarks of hyperglycemia. However, it is unknown whether clustering of elevated inflammation and adiposity interact act on diabetogenesis and lead to a greater risk for incident type 2 diabetes (T2D). METHODS: Adiposity was indicated by body mass index, waist circumference and ultrasonography-measured fatty liver degrees. Elevated inflammation was indicated as high-sensitivity C-reactive protein levels ≥ 2 mg/L. Time-to-event survival analyses were conducted to investigate the joint effect of adiposity and inflammation on incident T2D on both multiplicative and additive scales. RESULTS: Among 82,172 non-diabetic participants from a prospective cohort in China, 14,278 T2D occurred over a median follow-up of 11 years. In the multivariable-adjusted model, elevated inflammation [1.12 (1.08â1.16)] and adiposity [1.76 (1.69â1.83) for overweight/obesity, 1.49 (1.44â1.55) for central obesity, and 2.02 (1.95â2.09) for fatty liver] were significantly associated with incident diabetes. Higher adiposity-associated risks and incidence rates of diabetes were observed with elevated inflammation. When studying the joint effect, the adjusted HRs were 1.77 (1.69â1.85) for overweight/obesity, 1.14 (1.06â1.23) for elevated inflammation, and 2.08 (1.97â2.19) for their joint effect, with a relative excess risk due to interaction of 0.17 (0.05â0.28). The attributable proportions were 71.30% for overweight/obesity, 12.96% for elevated inflammation, and 15.74% for their interaction. Similar results were observed when adiposity was assessed as waist circumference or fatty liver. CONCLUSIONS: Adiposity and elevated inflammation synergically lead to greater risks of incident diabetes than addition of each individual exposure. Strategies simultaneously targeting both risks should produce more benefits for diabetes prevention than through initiatives directed at each separate risk.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Adiposidad , Estudios Prospectivos , Sobrepeso , Obesidad/diagnóstico , Obesidad/epidemiología , Obesidad/complicaciones , Índice de Masa Corporal , Circunferencia de la Cintura , Inflamación/diagnóstico , Inflamación/epidemiología , Inflamación/complicaciones , Factores de RiesgoRESUMEN
Purpose: To study the risk factors affecting amputation and survival in patients with diabetic foot (DF) and to construct a predictive model using the machine learning technique for DF foot amputation and survival and evaluate its effectiveness. Materials and Methods: A total of 200 patients with DF hospitalized in the First Affiliated Hospital of Shantou University Medical College in China were selected via cluster analysis screening, Kaplan-Meier survival calculation, amputation rate and Cox proportional hazards model investigation of risk factors associated with amputation and death. In addition, we constructed various models, including Cox proportional hazards regression analysis, the deep learning method convolution neural network (CNN) model, backpropagation (BP) neural network model, and backpropagation neural network prediction model after optimizing the genetic algorithm. The accuracy of the 4 prediction models for survival and amputation was assessed, and we evaluated the reliability of these computational models based on the size of the area under the ROC curve (AUC), sensitivity and specificity. Results: We found that the 1-year survival rate in patients with DF was 88.5%, and the 1-year amputation rate was 12.5%. Wagner's Classification of Diabetic Foot Ulcers grade, ankle-brachial index (ABI), low-density lipoprotein (LDL), and percutaneous oxygen partial pressure (TcPO2) were independent risk factors for amputation in patients with DF, while cerebrovascular disease, Sudoscan sweat gland function score, glycated hemoglobin (HbA1c) and peripheral artery disease (PAD) were independent risk factors for death in patients with DF. In addition, our results showed that in the case of amputation, the COX regression predictive model revealed an AUC of 0.788, sensitivity of 74.1% and specificity of 83.6%. The BP neural network predictive model identified an AUC of 0.874, sensitivity of 87.0% and specificity of 87.7%. An AUC of 0.909, sensitivity of 90.7% and specificity of 91.1% were found after optimizing the BP neural network prediction model via genetic algorithm. In the deep learning CNN model, the AUC, sensitivity and specificity were 0.939, 92.6%, and 95.2%, respectively. In the analysis of risk factors for death, the COX regression predictive model identified the AUC, sensitivity and specificity as 0.800, 74.1% and 85.9%, respectively. The BP neural network predictive model revealed an AUC, sensitivity and specificity of 0.937, 93.1% and 94.4%, respectively. Genetic algorithm-based optimization of the BP neural network predictive model identified an AUC, sensitivity and specificity of 0.932, 91.4% and 95.1%, respectively. The deep learning CNN model found the AUC, sensitivity and specificity to be 0.861, 82.8% and 89.4%, respectively. Conclusion: To identify risk factors for death, the BP neural network predictive model and genetic algorithm-based optimizing BP neural network predictive model have higher sensitivity and specificity than the deep learning method CNN predictive model and COX regression analysis.
Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/diagnóstico , Pronóstico , Reproducibilidad de los Resultados , Factores de Riesgo , Amputación QuirúrgicaRESUMEN
BACKGROUND: Recent studies have established that monocyte-derived inflammation plays a central role in the pathogenesis of type 2 diabetes mellitus (T2DM). It is unclear whether chronic metabolic inflammation, reflected by the cumulative monocyte to high-density lipoprotein ratio (CumMHR), predisposes the general population to T2DM. METHODS: This study included 40,813 participants without diabetes from a real-life, community-based cohort (the Kailuan Study) attending a 2-year cycle of health survey since 2006. Cumulative exposure was obtained from 2006/2007 to 2010/2011. Follow-up started at 2010/2011 and through 2020. Multivariable-adjusted Cox regression models were used to calculate the CumMHR-associated risk of incident T2DM. RESULTS: Over a median follow-up period of 7.98 (IQR: 5.74-8.87) years, 4,848 T2DM cases occurred. The CumMHR was positively associated with the risk of incident T2DM after adjusting for age, sex, smoking, drinking habits, physical activities, BMI, triglyceride-glycemia index, log(leukocyte count), log(hsCRP), blood pressure, renal function, and medication uses with adjusted HRs of 1.0 (ref.), 1.18 (1.05â1.25), 1.17 (1.07â1.27), 1.38 (1.26â1.50), respectively, in CumMHR Quartiles 1, 2, 3 and 4. When follow-up ended at 2014/2015, the short-term (4âyear) adjusted T2DM risks in CumMHR Quartiles 2, 3, and 4 were 1.14 (1.01â1.29), 1.17 (1.04â1.32), 1.40 (1.25â1.58), respectively, relative to Quartile 1. A significant interaction between CumMHR and cumulative high-sensitivity C-reactive protein (CumCRP) was observed (P-interaction: 0.0109). The diabetic risk in the highest quartile of CumMHR was higher (1.53 [1.28â1.84]) when CumCRP < 1 mg/L, attenuated with increasing CumCRP levels (1 ~ 10 mg/L) and disappeared in CumCRP ≥ 10 mg/L. Hypertension, overweight, or smoking habits further modified the CumMHR-associated diabetic risk. CONCLUSIONS: Cumulative MHR may be a promising supplement to hsCRP for more comprehensively assessing the influence of metabolic inflammation on T2DM susceptibility. For primary prevention, targeting high CumMHR, especially in cases at low risk of diabetes defined by traditional risk factors, may further help reduce the diabetic risk.
Asunto(s)
Diabetes Mellitus Tipo 2 , Lipoproteínas HDL , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Monocitos , Proteína C-Reactiva , Estudios Prospectivos , Inflamación/diagnóstico , Inflamación/epidemiologíaRESUMEN
BACKGROUND: Uric acid was found to have a positive correlation with thyroid nodules in the cross-sectional studies recently. We aimed to conduct a retrospective cohort study to investigate whether uric acid is a risk factor for the development of thyroid nodules. METHODS: We reviewed the data of individuals who attended the medical check-ups in our hospital from 2010 to 2019. A total of 6587 adults without thyroid nodules at baseline were enrolled in this study. Logistic regression with or without restricted cubic spline function was used to investigate the non-linear or linear association between uric acid and thyroid nodules, respectively. RESULTS: Baseline characteristics showed that subjects mainly consisted of the healthy, young population. After fully adjusting for the potential confounders, such as age, sex, metabolic and inflammatory indicators, hepatic and renal function, a logistic restricted cubic spline regression model suggested that uric acid had a significant association (P = 0.028) with the development of thyroid nodules, but the association was not non-linear (P = 0.516). The results indicate that the association between them is linear, which was demonstrated by a logistic regression model, in which the odds ratio of uric acid per 100 mmol/L was 1.137 (P = 0.004). Age, sex, diastolic blood pressure, fasting blood sugar, and blood monocyte were found to be risk factors for thyroid nodules as well. CONCLUSION: Uric acid is an independent risk factor for the formation of thyroid nodules. This finding warrants attention to this risk factor in apparently healthy adults.
Asunto(s)
Nódulo Tiroideo , Adulto , Estudios Transversales , Humanos , Estudios Retrospectivos , Factores de Riesgo , Nódulo Tiroideo/epidemiología , Ácido ÚricoRESUMEN
Human amnion/chorion membrane therapy has shown advantages in the management of diabetic foot ulcers and its effectiveness has been evaluated in the systematic reviews and meta-analyses. However, the number of patients included in the previous literatures was small and the safety profile of human amnion/chorion membrane therapy was not concerned. Therefore, we conducted an updated meta-analysis to better understand the effectiveness and safety of human amnion/chorion membrane therapy for diabetic foot ulcers. The PubMed, Embase, Cochrane Library, and ClinicalTrial.gov databases were searched for any randomized clinical trials comparing human amnion/chorion membrane therapy and standard therapy in the treatment of diabetic foot ulcers. Ulcer healing rate was considered as the primary outcome and the secondary outcomes mainly included mean time to ulcer healing and adverse events. Nine RCTs with 541 patients were included. Compared with merely standard therapy, human amnion/chorion membrane therapy plus standard therapy improved the ulcer healing rates at 6 weeks (RR = 3.50, 95% CI: 2.35-5.21), 12 weeks (RR = 2.09, 95% CI: 1.53-2.85) and 16 weeks (RR = 1.70, 95% CI: 1.25-2.30), and also shortened the healing time (MD = -4.58, 95% CI: -5.70 to -3.46). Meanwhile, no significant difference was observed in the number of patients with adverse events (RR = 0.56, 95% CI: 0.31-1.03) between two groups. This meta-analysis suggests that human amnion/chorion membrane therapy as an adjuvant treatment could promote the healing of diabetic foot ulcers and has a safety profile. More evidence from large high-quality randomized clinical trials with long follow-up duration are in urgent need to further confirm our findings.
Asunto(s)
Amnios/trasplante , Apósitos Biológicos , Corion/trasplante , Pie Diabético/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Cicatrización de Heridas/fisiología , Aloinjertos , Humanos , Resultado del TratamientoRESUMEN
PURPOSE: To explore mild cognitive dysfunction and/or spatial working memory impairment in patients with primary onset middle-age type 2 diabetes mellitus (T2DM] using ethology (behavior tests) and blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). MATERIALS AND METHODS: Eighteen primary onset T2DM patients and 18 matched subjects with normal blood glucose levels were all tested using the Montreal cognitive assessment scale test, the Wechsler Memory Scale Chinese-revised test, and scanned using BOLD-fMRI (1.5T, EPI sequence) while performing the n-back task to find the activation intensity of some cognition-related areas. RESULTS: The ethology results showed that T2DM patients had a mild cognitive impairment and memory dysfunction (P < 0.05). The fMRI scan identified a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), bilateral premotor area (PreMA), bilateral parietal lobe (PA), and anterior cingulate cortex (ACC) / supplementary motor area (SMA) that was activated during the n-back task, with right hemisphere dominance. However, only the right PA and ACC/SMA showed a load effect via quantitative analysis in the T2DM group; the activation intensity of most working memory-related brain areas for the T2DM group were lower than for the control group under three memory loads. Furthermore, we found that the activation intensity of some cognition-related areas, including the right insular lobe, left caudate nucleus, and bilateral hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. CONCLUSION: Diabetes-related brain damage of primary onset middle-age T2DM patients with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial working memory and mild cognitive dysfunction.
Asunto(s)
Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , Adulto , Mapeo Encefálico/métodos , Trastornos del Conocimiento/etiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Trastornos de la Memoria/diagnóstico , Trastornos de la Memoria/etiología , Memoria a Corto Plazo , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The objective of this study was to determine if plasma membrane vesicles (PMVs) could be exploited for efficient transfer of macro-biomolecules and mitochondria. PMVs were derived from mechanical extrusion, and made fusogenic (fPMVs) by incorporating the glycoprotein G of vesicular stomatitis virus (VSV-G). Confocal microscopy examination revealed that cytoplasmic proteins and mitochondria were enclosed in PMVs as evidenced by tracing with cytoplasmically localized and mitochondria-targeted EGFP, respectively. However, no fluorescence signal was detected in PMVs from cells whose nucleus was labeled with an EGFP-tagged histone H2B. Consistently, qRT-PCR measurement showed that mRNA, miRNA and mitochondrial DNA decreased slightly; while nuclear DNA was not measureable. Further, Western blot analysis revealed that cytoplasmic and membrane-bound proteins fell inconspicuously while nuclear proteins were barely detecsle. In addition, fPMVs carrying cytoplamic DsRed proteins transduced about ~40 % of recipient cells. The transfer of protein was further confirmed by using the inducible Cre/loxP system. Mitochondria transfer was found in about 20 % recipient cells after incubation with fPMVs for 5 h. To verify the functionalities of transferred mitochondria, mitochodria-deficient HeLa cells (Rho0) were generated and cultivated with fPMVs. Cell enumeration demonstrated that adding fPMVs into culture media stimulated Rho0 cell growth by 100 % as compared to the control. Lastly, MitoTracker and JC-1 staining showed that transferred mitochondria maintained normal shape and membrane potential in Rho0 cells. This study established a time-saving and efficient approach to delivering proteins and mitochondria by using fPMVs, which would be helpful for finding a cure to mitochondria-associated diseases. Graphical abstract Schematic of the delivery of macro-biomolecules and organelles by fPMVs. VSV-G-expressing cells were extruded through a 3 µm polycarbonate membrane filter to generate fusogenic plasma membrane vesicles (fPMVs), which contain bioactive molecules and organelles but not the nucleus. fPMVs can be endocytosed by target cells, while the cargo is released due to low-pH induced membrane fusion. These nucleus-free fPMVs are efficient at delivery of cytoplasmic proteins and mitochondria, leading to recovery of mitochondrial biogenesis and proliferative ability in mitochondria-deficient cells.
Asunto(s)
Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocondrias/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Núcleo Celular , ADN Mitocondrial/genética , Genómica , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , MicroARNs/genética , Cemento de Policarboxilato/química , ARN Mensajero/genética , Análisis de Secuencia de ADN , Virus de la Estomatitis Vesicular IndianaRESUMEN
OBJECTIVES: We previously found niacin receptor GPR109A was expressed in murine islet beta-cells, and signaling through GPR109A inhibited glucose stimulated insulin secretion (GSIS). However, the expression of GPR109A in human islets and its functional relevance is still not known. METHODS: The expression of GPR109A was examined by antibody staining and in situ hybridization on pancreatic paraffin sections. GPR109A was cloned and expressed in INS-1 islet beta-cells. Intracellular cAMP and GSIS were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS: The expression of GPR109A was confirmed in murine islet beta-cells and further detected in human counterparts by using commercially available polyclonal antibodies. In situ hybridization study detected the transcripts of GPR109A, but not that of closely related GPR109B. Furthermore, GPR109A was significantly reduced in islets from diabetic individuals and animal model of db/db mice as compared to their respective controls. Further, GPR109A levels in insulinoma were also reduced dramatically as compared to islets found in corresponding non-tumor normal tissues. Quantitative RT-PCR analysis demonstrated that GPR109A transcripts were severely down-regulated in rodent insulinoma cell lines as compared to that of freshly isolated islets from mice. Finally, human and murine GPR109A expression cassettes were transfected into INS-1 cells, which resulted in reduced accumulation of cAMP and insulin secretion after incubation with niacin. The effect could be completely abrogated by pretreatment with pertussis toxin. CONCLUSIONS: These results demonstrate that GPR109A is functionally expressed in both human and murine islet beta-cells. However, the role of GPR109A in the prevention of diabetes or insulinoma needs further study.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Anciano , Animales , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Glucosa/farmacología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Nicotínicos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
Background: Current therapeutic measures for thyroid dysfunction are limited and often accompanied by adverse effects. The use of lipid-lowering drugs like statins has recently been associated with lower thyroid eye diseases risk. Objective: To investigate the implications of genetically proxied lipid-lowering drugs on thyroid dysfunction. Methods: In this drug-target Mendelian randomization (MR) study, we utilized genetic variants within drug target genes associated with low-density lipoprotein (LDL) or triglyceride (TG), derived from a genome-wide association study (GWAS) meta-analysis (N ≤ 188,577), to simulate lifelong drug interventions. Genetic summary statistics for thyroid dysfunction outcomes were retrieved from GWAS datasets of Thyroid Omics Consortium (N ≤ 54,288) and UK Biobank (N = 484,598). Inverse-variance-weighted MR (IVW-MR) method was performed as primary analysis, followed by validation in colocalization analysis. A subsequent two-step MR analysis was conducted to identify biomarkers mediating the identified drug-outcome association. Results: In IVW-MR analysis, genetic mimicry of 3-hydroxy-3-methylglutarylcoenzyme reductase (HMGCR) inhibitors (e.g. statins) was significantly associated with lower risk of hyperthyroidism in two independent datasets (OR1, 0.417 per 1-mmol/L lower in LDL-C; 95% CI 0.262 to 0.664; P1 = 2.262 × 10-4; OR2 0.996; 95% CI 0.993-0.998; P2 = 0.002). Two-step MR analysis revealed eighteen biomarkers linked to genetic mimicry of HMGCR inhibition, and identified insulin-like growth factor 1 (IGF-1) levels mediating 2.108% of the negative causal relationship between HMGCR inhibition and hyperthyroidism. Conclusion: This study supports HMGCR inhibition as a promising therapeutic strategy for hyperthyroidism and suggests its underlying mechanisms may extend beyond lipid metabolism. Further investigations through laboratory studies and clinical trials are necessary to confirm and elucidate these findings.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipertiroidismo , Humanos , Biomarcadores , Reposicionamiento de Medicamentos , Estudio de Asociación del Genoma Completo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lipoproteínas LDL , Análisis de la Aleatorización MendelianaRESUMEN
Aroma is one of the most outstanding quality characteristics of Qingzhuan tea (QZT), but its formation is still unclear. Thus, the volatile organic compounds (VOCs) during the whole processing of QZT were investigated by headspace solid-phase microextraction/gas chromatography-mass spectrometry. Based on 144 identified VOCs, the results showed that de-enzyming, sun-drying, and piling fermentation were the key processes of QZT aroma formation. Furtherly, 42 differential VOCs (VIP > 1.0 and p < 0.05) and 16 key VOCs (rOAV > 1.0 and/or ROAV > 1.0) were screened. Especially, sulcatone and ß-ionone (rOAV > 100 and ROAV > 10) were considered the most important contributors to the aroma of QZT. The metabolisms of key VOCs were mainly involved in oxidative degradation of fatty acids, degradation of carotenoids, and methylation of gallic acid. This study could help to more comprehensively understand the aroma formation in QZT processing at an industrial scale.
Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Carotenoides/análisis , Fermentación , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodosRESUMEN
Sirtuin 1 (SIRT1) is one member of the silent information regulator 2 (Sir2)-like family of proteins involved in glucose homeostasis in mammals. It has been reported that SIRT1 modulates endocrine signaling of glucose and fat homeostasis by regulating transcription factors such as forkhead transcription factor 3a (FOXO3a), glucose transporter 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and PPARγ coactivator (PGC-1α). However, it is still not clear how SIRT1 is involved in the development of insulin resistance. To determine the location and expression of SIRT1 and its target proteins in rats and analyze the interactions and functions of these proteins in insulin resistance. Forty-eight male Sprague-Dawley rats were randomly divided into four regimen groups: normal control (NC), calorie restriction (CR), high-fat (HFa), and high-fructose (HFr). Animals were fed for 12 weeks and blood samples collected from tail veins at weeks 2, 4, 6, 8 and 12 after fasting for 16 h. Baseline metabolic parameters such as fasting blood sugar, insulin, cholesterol and triglycerides were analyzed. A glucose tolerance test was carried out at the end of the study. Visceral fat, consisting of epididymis and perirenal fat, was isolated and weighed. The pancreas from each animal was also immediately removed. Immunohistochemical staining was performed to detect the locations of SIRT1, FOXO3a, GLUT4, PPARγ and PGC-1α in the ß-cell of the rat pancreas. Expression in the pancreas was analyzed by western blotting. Blood biochemical analysis indicated that the HFa and HFr groups were insulin-resistant. Immunohistochemical staining showed that GLUT4 was a nuclear protein. SIRT1, FOXO3a, PPARγ and PGC-1α were present in both the nucleus and the cytoplasm of ß-cells of pancreatic islets. The expression of SIRT1, GLUT4 and PGC-1α increased significantly in response to CR, but decreased in the HFr and HFa groups. FOXO3a was similar in the CR and the NC groups, whereas it declined in the HFa and HFr groups. PPARγ was elevated in the HFa group, but dropped in the CR and HFr groups. These data suggest that SIRT1 and its regulators are involved in the development of insulin resistance.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina/genética , PPAR gamma/metabolismo , Proteínas de Unión al ARN/metabolismo , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo , Animales , Restricción Calórica , Dieta Alta en Grasa , Proteína Forkhead Box O3 , Fructosa/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Masculino , Páncreas/citología , Páncreas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Unión Proteica , Ratas , Ratas Sprague-DawleyRESUMEN
Pile-fermentation is a critical procedure for producing Chinese dark tea, during which thermophilic microorganisms would play an irreplaceable role. However, there have been little researches on the influences of thermophilic microorganism pile-fermentation (TMPF) in high-temperature of Chinese dark tea. Thus, we conducted high-performance liquid chromatography and nontargeted metabolomic to analyze the non-volatile metabolites of TMPF. Our results discovered that the amounts of ( -)-epigallocatechin gallate, ( -)-epigallocatechin, ( -)-epicatechin gallate, and ( -)-epicatechin were decreased significantly (p < 0.05) after TMPF. By using nontargeted metabolomic analysis, a total of 1733 ion features were detected. KEGG pathway enrichment analysis showed that TMPF had a significant impact on caffeine metabolism. Also, theophylline, 3-methylxanthine, and 1,3,7-trimethyluric acid were increased significantly after TMPF, which suggested that demethylation and oxidation reaction might be the main pathways of caffeine metabolism. This study provides a better understanding of the mechanism of TMPF during high-temperature for Chinese dark tea and lays a foundation for further research. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01098-9.
RESUMEN
Genetic lineage tracing is indispensable to unraveling the origin, fate, and plasticity of cells. However, the intrinsic leakiness in the CreER-loxP system raises concerns on data interpretation. Here, we reported the generation of a novel dual inducible CreER-loxP system with superior labeling characteristics. This two-component system consists of membrane localized CreER (mCreER: CD8α-FRB-CS-CreER) and TEV protease (mTEVp: CD8α-FKBP-TEVp), which are fusion proteins incorporated with the chemically induced dimerization machinery. Rapamycin and tamoxifen induce sequential dimerization of FKBP and FRB, cleavage of CreER from the membrane, and translocation into the nucleus. The labeling leakiness in Ad293 cells reduced dramatically from more than 70% to less than 5%. This tight labeling feature depends largely on the association of mCreER with HSP90, which conceals the TEV protease cutting site between FRB and CreER and thus preventing uninduced cleavage of the membrane-tethering CreER. Membrane-bound CreER also diminished significantly cytotoxicity. Our studies showed mCreER under the control of the rat insulin promoter increased labeling specificity in MIN6 islet beta-cells. Viability and insulin secretion of MIN6 cells remained intact. Our results demonstrate that this novel system can provide more stringent temporal and spatial control of gene expression and will be useful in cell fate probing.
RESUMEN
With the aim to reveal the microbial community succession at various temperatures in the fermentation of Qingzhuan tea (QZT), the Illumina NovaSeq sequencing was carried out to analyze bacterial and fungal community structure in tea samples collected from the fermentation set at various temperatures, i.e., 25 °C, 30 °C, 37 °C, 45 °C, 55 °C, and room temperature. The results showed that fermentation temperature profoundly affected the microbial community succession in the QZT fermentation. Microbial richness and community diversity decreased along with the increase of fermentation temperature. Despite the differences between microorganisms and their metabolic types among various temperatures, most bacteria and fungi showed positive correlations at the genera level. Klebsiella, Paenibacillus, Cohnella, and Pantoea were confirmed as the main bacterial genera, and Aspergillus and Cyberlindnera were the main fungal genera in QZT fermentation. The microbial genera (i.e. Aspergillus, Rhizomucor, Thermomyces, Ralstonia, Castellaniella, and Vibrio) were positively correlated with fermentation temperature (P < 0.05), while Klebsiella, Paenibacillus, and Aspergillus had good adaptability at different temperatures. Conversely, Pantoea and Cyberlindnera were only suitable for low temperature (≤37 °C) growth, and Thermomyces was only suitable for high temperature (>37 °C) growth. Aspergillus had a significant positive correlation with tea aroma quality (r = 0.64, p < 0.05). This study would help to understand the formation mechanism of QZT from microflora perspective.
Asunto(s)
Microbiota , Aspergillus , Bacterias , Fermentación , Té/microbiología , TemperaturaRESUMEN
A higher expression of S-100 in tissue of thyroid papillary carcinoma (TPC) vs. thyroid follicular adenoma (TFA) (p < .001) was observed as well as a higher expression of CD83 in the peri-cancerous tissues vs. TFA (p < .001), oppositely, CD83 was negative in the cancerous net. TPC showed greater decreases in levels of CD80 and CD86 than did the TFA. These findings suggest that impaired immune function, absence of CD83-positive mature and activated dendritic cells in cancer nodules may have a role in the pathogenesis of TPC. The low expression of CD80 and CD86 in TPC may help them evade the immune system.
Asunto(s)
Adenoma/inmunología , Antígenos CD/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Células Dendríticas/inmunología , Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas S100/metabolismo , Adulto , Anciano , Carcinoma , Carcinoma Papilar , Estudios de Casos y Controles , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/inmunología , Factores de Tiempo , Escape del Tumor , Antígeno CD83RESUMEN
BACKGROUND: The relationship between obesity and the outcomes of critically ill diabetic patients is not completely clear. We aimed to assess the effects of obesity and overweight on the outcomes among diabetic patients in the intensive care unit (ICU). METHODS: Critically ill diabetic patients in the ICU were classified into three groups according to their body mass index. The primary outcomes were 30-day and 90-day mortality. ICU and hospital length of stay (LOS) and incidence and duration of mechanical ventilation were also assessed. Cox regression models were developed to evaluate the relationship between obesity and overweight and mortality. RESULTS: A total of 6108 eligible patients were included. The 30-day and 90-day mortality in the normal weight group were approximately 1.8 times and 1.5 times higher than in the obesity group and overweight group, respectively (P < 0.001, respectively). Meanwhile, the ICU (median (IQ): 2.9 (1.7, 5.3) vs. 2.7 (1.6, 4.8) vs. 2.8 (1.8, 5.0)) and hospital (median (IQ): 8.3 (5.4, 14.0) vs. 7.9 (5.1, 13.0) vs. 8.3 (5.3, 13.6)) LOS in the obesity group and overweight group were not longer than in the normal weight group. Compared with normal weight patients, obese patients had significantly higher incidence of mechanical ventilation (58.8% vs. 64.7%, P < 0.001) but no longer ventilation duration (median (IQ): 19.3 (7.0, 73.1) vs. 19.0 (6.0, 93.7), P = 1). Multivariate Cox regression showed that obese and overweight patients had lower 30-day (HR (95% CI): 0.62 (0.51, 0.75); 0.76 (0.62, 0.92), respectively) and 90-day (HR (95% CI): 0.60 (0.51, 0.70); 0.79 (0.67, 0.93), respectively) mortality risks than normal weight patients. CONCLUSIONS: Obesity and overweight were independently associated with greater survival in critically ill diabetic patients, without increasing the ICU and hospital LOS. Large multicenter prospective studies are needed to confirm our findings and the underlying mechanisms warrant further investigation.
Asunto(s)
Diabetes Mellitus Tipo 1/mortalidad , Diabetes Mellitus Tipo 2/mortalidad , Obesidad/mortalidad , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Enfermedad Crítica , Bases de Datos Factuales , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Femenino , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Obesidad/diagnóstico , Pronóstico , Respiración Artificial , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de TiempoRESUMEN
Objective: This study aimed to explore the structural changes in patients with subclinical hypothyroidism (SCH) using voxel-based morphometry (VBM) and to investigate the altered attentional control networks using functional MRI (fMRI) during the performance of a modified Stroop task with Chinese characters. Methods: High-resolution three-dimensional (3D) T1-weighted images and an fMRI scan were taken from 18 patients with SCH and 18 matched control subjects. The Montreal Cognitive Assessment Chinese-revised (MoCA-CR) and the Stroop task were used to evaluate the cognitive and attention control of the participants. Results: Compared to controls, the VBM results showed decreased gray matter volumes (GMVs) in bilateral prefrontal cortices (PFCs, including middle, medial, and inferior frontal gyri), cingulate gyrus, precuneus, left middle temporal gyrus, and insula in patients with SCH. The fMRI results showed a distributed network of brain regions in both groups, consisting of PFCs (including superior and middle and inferior frontal cortices), anterior cingulate cortex (ACC), posterior cingulate cortex, and precuneus, as well as the insula and caudate nucleus. Compared to controls, the SCH group had lower activation of the above brain areas, especially during the color-naming task. In addition, the normalized GMV (nGMV) was negatively correlated with thyroid-stimulating hormone (TSH) level (r = -0.722, p < 0.001). Conclusion: Results indicate that patients with SCH exhibit reduced GMVs, altered BOLD signals, and activation in regions associated with attention control, which further suggest that patients with SCH may have attentional control deficiency, and the weakened PFC-ACC-precuneus brain network might be one of the neural mechanisms. Negative correlations between nGMV and TSH suggest that TSH elevation may induce abnormalities in the cortex.
RESUMEN
PURPOSE: Chronic low-grade inflammation is detected in obese and diabetic individuals. Tetracyclines, used as antibiotics for years, have been demonstrated to have diverse non-bactericidal effects, including anti-tumor and anti-inflammatory activities. This study aimed to investigate whether doxycycline at sub-antimicrobial concentrations could improve glycemic control in mice fed a high-fat diet, through its anti-inflammatory activities. METHODS: C57BL/6J mice were fed with a high-fat diet to induce diabetic and obese conditions. Three sub-antimicrobial dosages of doxycycline (200, 20, and 2 µg/mL) were added to drinking water for 23 weeks during the housing phase. RESULTS: Doxycycline at 200 µg/mL tended to increase body weight, islet mass, and the percentage of large islets (diameter >350 µm). At 20 µg/mL, doxycycline significantly improved glucose tolerance and decreased fasting blood glucose. At 2 µg/mL, doxycycline increased the percentage of small islets (diameter <80 µm). Serum C-reactive protein and lipopolysaccharide levels significantly decreased while the beta-cell ratio increased in all doxycycline-administered mice. CONCLUSION: Our results suggest that doxycycline, even at an extremely low dose, could improve glycemic control and islet morphology via its anti-inflammatory activities.
RESUMEN
Polycystic ovary syndrome (PCOS) is a common endocrine disease in females that is characterized by hyperandrogenemia, chronic anovulation, and polycystic ovaries. However, the exact etiology and pathogenesis of PCOS are still unknown. The aim of this study was to clarify the bacterial, stress status, and metabolic differences in the gut microbiomes of healthy individuals and patients with high body mass index (BMI) PCOS (PCOS-HB) and normal BMI PCOS (PCOS-LB), respectively. Here, we compared the gut microbiota characteristics of PCOS-HB, PCOS-LB, and healthy controls by 16S rRNA gene sequencing, FK506-binding protein 5 (FKBP5) DNA methylation and plasma metabolite determination. Clinical parameter comparisons indicated that PCOS patients had higher concentrations of total testosterone, androstenedione, dehydroepiandrosterone sulfate, luteinizing hormone, and HOMA-IR while lower FKBP5 DNA methylation. Significant differences in bacterial diversity and community were observed between the PCOS and healthy groups but not between the PCOS-HB and PCOS-LB groups. Bacterial species number was negatively correlated with insulin concentrations (both under fasting status and 120 min after glucose load) and HOMA-IR but positively related to FKBP5 DNA methylation. Compared to the healthy group, both PCOS groups had significant changes in bacterial genera, including Prevotella_9, Dorea, Maihella, and Slackia, and plasma metabolites, including estrone sulfate, lysophosphatidyl choline 18:2, and phosphatidylcholine (22:6e/19:1). The correlation network revealed the complicated interaction of the clinical index, bacterial genus, stress indices, and metabolites. Our work links the stress responses and gut microbiota characteristics of PCOS disease, which might afford perspectives to understand the progression of PCOS.