Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 138(18): 1757-1767, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34041523

RESUMEN

Recent studies have shown that maternal anti-CD36 antibodies represent a frequent cause of fetal/neonatal alloimmune thrombocytopenia (FNAIT) in Asian and African populations. However, little is known about the pathomechanism and antenatal treatment of anti-CD36-mediated FNAIT. Here, we established a novel animal model to examine the clinical features of pups from immunized Cd36-/- female mice after breeding with wild-type male mice. Mild thrombocytopenia was observed, but high pup mortality was also documented (40.26%). Administration of intravenous immunoglobulin (IVIG) (1 g/kg) on days 7, 12, and 17 to immunized Cd36-/- mothers after breeding reduced fetal death (12.70%). However, delaying the IVIG administration series on days 10, 15, and 20 did not reduce fetal death (40.00%). In contrast, injection of deglycosylated anti-CD36 (deg-anti-CD36) polyclonal antibodies (5 mg/kg) on days 10, 15, and 20 significantly reduced fetal death (5.26%). Subsequently, monoclonal antibodies (mAbs) against mouse CD36 were developed, and one clone producing high-affinity anti-CD36 (termed 32-106) effectively inhibited maternal antibody binding and was therefore selected. Using the same approach of deg-anti-CD36, the administration of deg-32-106 significantly reduced fetal death (2.17%). Furthermore, immunized Cd36-/- mothers exhibited placental deficiency. Accordingly, maternal anti-CD36 antibodies inhibited angiogenesis of placenta endothelial cells, which could be restored by deg-32-106. In summary, maternal anti-CD36 antibodies caused a high frequency of fetal death in our animal model, associated with placental dysfunction. This deleterious effect could be diminished by the antenatal administration of IVIG and deg-mAb 32-106. Interestingly, treatment with deg-32-106 seems more beneficial considering the lower dose, later start of treatment, and therapy success.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD36/inmunología , Trombocitopenia Neonatal Aloinmune/terapia , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Embarazo , Atención Prenatal , Trombocitopenia Neonatal Aloinmune/inmunología
2.
Ann Lab Med ; 43(1): 86-91, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36045061

RESUMEN

Antibodies against human CD36 are responsible for several immune-mediated disorders. The detection of anti-CD36 antibodies using the standard monoclonal antibody (mAb) immobilization of platelet antigens (MAIPA) assay is hampered by a high frequency of false-negative results, most likely due to competitive inhibition of the mAb used as the capture antibody. We generated a panel of mouse mAbs against CD36 and seven hybridomas (GZ-3, GZ-13, GZ-70, GZ-143, GZ-413, GZ-507, and GZ-608), which were selected for MAIPA assays, as they reacted with mouse and human CD36. Fourteen anti-CD36 sera were assayed; all of which showed a positive reaction in a PakPlus (Immucor GTI Diagnostics, Inc., Waukesha, WI, USA) ELISA-based screening (optical density: 0.257-2.292). When the reference anti-CD36 mAb FA6-152 was used in the MAIPA assay, only 6/14 (42.9%) sera displayed a positive reaction. In contrast, anti-CD36 antibodies were detected in 13/14 (92.9%) sera when GZ-70 and GZ-608 mAbs were used. This significant improvement resulted in the identification of anti-CD36 antibodies by an antigen capture assay. Since patient's platelets possibly carrying rare native antigens are used, this method will facilitate the identification of new platelet antibodies against CD36 that are involved in immune-mediated thrombocytopenia and other diseases, such as transfusion-related acute lung injury.


Asunto(s)
Antígenos de Plaqueta Humana , Trombocitopenia , Animales , Anticuerpos Monoclonales , Plaquetas , Antígenos CD36 , Humanos , Ratones , Trombocitopenia/diagnóstico
3.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36809299

RESUMEN

Anti-CD36 Abs have been suggested to induce transfusion-related acute lung injury (TRALI) upon blood transfusion, particularly in Asian populations. However, little is known about the pathological mechanism of anti-CD36 Ab-mediated TRALI, and potential therapies have not yet been identified. Here, we developed a murine model of anti-CD36 Ab-mediated TRALI to address these questions. Administration of mouse mAb against CD36 (mAb GZ1) or human anti-CD36 IgG, but not GZ1 F(ab')2 fragments, induced severe TRALI in Cd36+/+ male mice. Predepletion of recipient monocytes or complement, but not neutrophils or platelets, prevented the development of murine TRALI. Moreover, plasma C5a levels after TRALI induction by anti-CD36 Abs increased more than 3-fold, implying a critical role of complement C5 activation in the mechanism of Fc-dependent anti-CD36-mediated TRALI. Administration of GZ1 F(ab')2, antioxidant (N-acetyl cysteine, NAC), or C5 blocker (mAb BB5.1) before TRALI induction completely protected mice from anti-CD36-mediated TRALI. Although no significant amelioration in TRALI was observed when mice were injected with GZ1 F(ab')2 after TRALI induction, significant improvement was achieved when mice were treated postinduction with NAC or anti-C5. Importantly, anti-C5 treatment completely rescued mice from TRALI, suggesting the potential role of existing anti-C5 drugs in the treatment of patients with TRALI caused by anti-CD36.


Asunto(s)
Lesión Pulmonar Aguda Postransfusional , Ratones , Humanos , Masculino , Animales , Lesión Pulmonar Aguda Postransfusional/patología , Plaquetas/patología , Monocitos/patología , Proteínas del Sistema Complemento , Activación de Complemento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA