Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38733023

RESUMEN

Wireless power transfer (WPT) technology is a contactless wireless energy transfer method with wide-ranging applications in fields such as smart homes, the Internet of Things (IoT), and electric vehicles. Achieving optimal efficiency in wireless power transfer systems has been a key research focus. In this paper, we propose a tracking method based on full current mode impedance matching for optimizing wireless power transfer efficiency. This method enables efficiency tracking in WPT systems and seamless switching between continuous conduction mode and discontinuous mode, expanding the detection capabilities of the wireless power transfer system. MATLAB was used to simulate the proposed method and validate its feasibility and effectiveness. Based on the simulation results, the proposed method ensures optimal efficiency tracking in wireless power transfer systems while extending detection capabilities, offering practical value and potential for widespread applications.

2.
EMBO Rep ; 21(7): e49210, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32462726

RESUMEN

The current obesity epidemic mainly results from high-fat high-caloric diet (HFD) feeding and may also be contributed by chronic stress; however, the neural basis underlying stress-related diet-induced obesity remains unknown. Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamus (PVH), a known body weight-regulating region, represent one key group of stress-responsive neurons. Here, we found that HFD feeding blunted PVH CRH neuron response to nutritional challenges as well as stress stimuli and dexamethesone, which normally produce rapid activation and inhibition on these neurons, respectively. We generated mouse models with the activity of these neurons clamped at high or low levels, both of which showed HFD-mimicking, blunted PVH CRH neuron responsiveness. Strikingly, both models developed rapid HFD-induced obesity, associated with HFD-mimicking, reduced diurnal rhythmicity in feeding and energy expenditure. Thus, blunted responsiveness of PVH CRH neurons, but not their absolute activity levels, underlies HFD-induced obesity and may also contribute to stress-induced obesity.


Asunto(s)
Obesidad , Hormonas Liberadoras de Hormona Hipofisaria , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Obesidad/etiología
3.
J Neurosci ; 35(29): 10440-50, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203139

RESUMEN

The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Hiperfagia/fisiopatología , Núcleo Hipotalámico Paraventricular/fisiología , Proteína Relacionada con Agouti/biosíntesis , Animales , Hipotálamo/citología , Hipotálamo/fisiología , Hibridación in Situ , Ratones , Ratones Mutantes , Neuropéptido Y/metabolismo , Técnicas de Cultivo de Órganos , Núcleo Hipotalámico Paraventricular/citología , Técnicas de Placa-Clamp , Proopiomelanocortina/biosíntesis
4.
J Neurosci ; 35(8): 3312-8, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716832

RESUMEN

Lesions of the lateral hypothalamus (LH) cause hypophagia. However, activation of glutamatergic neurons in LH inhibits feeding. These results suggest a potential importance for other LH neurons in stimulating feeding. Our current study in mice showed that disruption of GABA release from adult LH GABAergic neurons reduced feeding. LH GABAergic neurons project extensively to the paraventricular hypothalamic nucleus (PVH), and optogenetic stimulation of GABAergic LH → PVH fibers induced monosynaptic IPSCs in PVH neurons, and potently increased feeding, which depended on GABA release. In addition, disruption of GABA-A receptors in the PVH reduced feeding. Thus, we have identified a new feeding pathway in which GABAergic projections from the LH to the PVH promote feeding.


Asunto(s)
Ingestión de Alimentos/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Animales , Neuronas GABAérgicas/metabolismo , Área Hipotalámica Lateral/citología , Potenciales Postsinápticos Inhibidores , Ratones , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Núcleo Hipotalámico Paraventricular/citología
5.
Neuroendocrinology ; 103(5): 476-488, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26337236

RESUMEN

BACKGROUND/AIMS: Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However, the mechanisms underlying its anorexigenic effects remain to be identified. METHODS: We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) and in neurons that express pro-opiomelanocortin (POMC). We then compared anorexigenic effects of apoA-IV in wild-type mice and in mutant mice lacking melanocortin 4 receptors (MC4Rs; the receptors of AgRP and the POMC gene product). Finally, we examined expression of apoA-IV in mouse hypothalamus and quantified its protein levels at fed versus fasted states. RESULTS: We demonstrate that apoA-IV inhibited the firing rate of AgRP/NPY neurons. The decreased firing was associated with hyperpolarized membrane potential and decreased miniature excitatory postsynaptic current. We further used c-fos immunoreactivity to show that intracerebroventricular (i.c.v.) injections of apoA-IV abolished the fasting-induced activation of AgRP/NPY neurons in mice. Further, we found that apoA-IV depolarized POMC neurons and increased their firing rate. In addition, genetic deletion of MC4Rs blocked anorexigenic effects of i.c.v. apoA-IV. Finally, we detected endogenous apoA-IV in multiple neural populations in the mouse hypothalamus, including AgRP/NPY neurons, and food deprivation suppressed hypothalamic apoA-IV protein levels. CONCLUSION: Our findings support a model where central apoA-IV inhibits AgRP/NPY neurons and activates POMC neurons to activate MC4Rs, which in turn suppresses food intake.


Asunto(s)
Apolipoproteína A-V/farmacología , Núcleo Arqueado del Hipotálamo/citología , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Apolipoproteína A-V/metabolismo , Bicuculina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , GABAérgicos/farmacología , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología
6.
Biochem Biophys Res Commun ; 451(2): 184-9, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25065745

RESUMEN

The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, ß-adrenergic receptors (ß-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Péptidos Cíclicos/farmacología , Receptor de Melanocortina Tipo 4/agonistas , alfa-MSH/análogos & derivados , Animales , Temperatura Corporal/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Ratones , Ratones Noqueados , Receptor de Melanocortina Tipo 4/deficiencia , Receptor de Melanocortina Tipo 4/fisiología , Receptores Adrenérgicos beta/deficiencia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/fisiología , Receptores de Vasopresinas/fisiología , alfa-MSH/farmacología
7.
Neuron ; 112(3): 458-472.e6, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38056455

RESUMEN

Maladaptation in balancing internal energy needs and external threat cues may result in eating disorders. However, brain mechanisms underlying such maladaptations remain elusive. Here, we identified that the basal forebrain (BF) sends glutamatergic projections to glutamatergic neurons in the ventral tegmental area (VTA) in mice. Glutamatergic neurons in both regions displayed correlated responses to various stressors. Notably, in vivo manipulation of BF terminals in the VTA revealed that the glutamatergic BF → VTA circuit reduces appetite, increases locomotion, and elicits avoidance. Consistently, activation of VTA glutamatergic neurons reduced body weight, blunted food motivation, and caused hyperactivity with behavioral signs of anxiety, all hallmarks of typical anorexia symptoms. Importantly, activation of BF glutamatergic terminals in the VTA reduced dopamine release in the nucleus accumbens. Collectively, our results point to overactivation of the glutamatergic BF → VTA circuit as a potential cause of anorexia-like phenotypes involving reduced dopamine release.


Asunto(s)
Prosencéfalo Basal , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/fisiología , Dopamina/fisiología , Anorexia , Fenotipo , Neuronas Dopaminérgicas/fisiología
8.
Cell Rep ; 42(5): 112502, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37171957

RESUMEN

The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.


Asunto(s)
Melanocortinas , Núcleo Hipotalámico Paraventricular , Humanos , Núcleo Hipotalámico Paraventricular/metabolismo , Melanocortinas/metabolismo , Obesidad/metabolismo , Peso Corporal , Ácido Glutámico/metabolismo
9.
Nat Commun ; 14(1): 2200, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069175

RESUMEN

The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.


Asunto(s)
Melanocortinas , Proopiomelanocortina , Ratones , Animales , Proopiomelanocortina/genética , alfa-MSH/farmacología , Obesidad/etiología , Peso Corporal , Pérdida de Peso , Receptor de Melanocortina Tipo 4/genética
10.
MAbs ; 14(1): 2107971, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35921534

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a crucial role in regulating microglial functions and removal of amyloid plaques in Alzheimer's disease (AD). However, therapeutics based on this knowledge have not been developed due to the low antibody brain penetration and weak TREM2 activation. In this study, we engineered a TREM2 bispecific antibody to potently activate TREM2 and enter the brain. To boost TREM2 activation, we increased the valency of bivalent anti-TREM2 Ab2 IgG to tetra-variable domain immunoglobulin (TVD-Ig), thus improving the EC50 of amyloid-ß oligomer (oAß)-lipid microglial phagocytosis by more than 100-fold. Ab2 TVD-Ig treatment also augmented both microglia migration toward oAß and microglia survival by 100-fold over the bivalent IgG antibody. By targeting the transferrin receptor (TfR), the brain-penetrating Ab2 TVD-Ig/αTfR bispecific antibody realized broad brain parenchyma distribution with a 10-fold increase in brain antibody concentration. Ab2 TVD-Ig/αTfR treatment of 5-month-old 5XFAD mice significantly boosted microglia-plaque interactions and enhanced amyloid plaque phagocytosis by microglia. Thus, potent TREM2 activation by a multivalent agonist antibody coupled with TfR-mediated brain entry can boost microglia clearance of amyloid plaques, which suggests the antibody has potential as an AD treatment.List of abbreviations AD: Alzheimer's disease; Ab: antibody; APOE: apolipoprotein E; Aß: amyloid beta; BBB: blood-brain barrier; BLI: bio-layer interferometry; CNS: central nervous system; CSF: colony-stimulating factor; CytoD: cytochalasin d; DAM: microglia type associated with neurodegenerative diseases; DAP12: DNAX-activation protein 12; TVD-Ig: tetra-variable domain immunoglobulin; ECD: extracellular domain; ELISA: enzyme-linked immunoassay; ESC: embryonic stem cell; hMGLs: human embryonic stem cell-derived microglia-like lines; IBA1: ionized calcium-binding adaptor molecule 1; ITAM: immunoreceptor tyrosine-based activation motif; KiH: knob-into-hole; NFAT: nuclear factor of activated t-cells; PC: phosphatidylcholine; PK: pharmacokinetics; PS: phosphatidylserine; pSYK: phosphorylated spleen tyrosine kinase; scFv: single-chain variable fragment; SEC: size-exclusion chromatography; sTREM2: soluble triggering receptor expressed on myeloid cells 2; SYK: spleen tyrosine kinase; TfR: transferrin receptor; TREM2: triggering receptor expressed on myeloid cells 2.


Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Humanos , Lactante , Glicoproteínas de Membrana , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptores Inmunológicos , Receptores de Transferrina/metabolismo , Quinasa Syk/metabolismo
11.
Sci Transl Med ; 14(661): eabq0095, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070367

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays crucial roles in Alzheimer's disease (AD) by regulating microglia migration toward, and phagocytosis of oligomeric amyloid-ß (oAß) and amyloid plaques. Studies in rodent models of AD have shown that mice with increased TREM2 expression have reduced amyloid pathology. Here, we identified a TREM2 agonist monoclonal Ab (Ab18) by panning a phage-displayed single-chain variable fragment Ab library. By engineering the bivalent immunoglobulin G1 (IgG1) to tetra-variable domain immunoglobulin (TVD-Ig), we further increased the TREM2 activation by 100-fold. Stronger TREM2 activation led to enhanced microglia phagocytosis of the oAß-lipid complex, migration toward oAß, and improved microglia survival in vitro. Mechanistic studies showed increased TREM2 clustering on microglia by the tetravalent Ab18 TVD-Ig without altering microglial TREM2 amount. An engineered bispecific Ab targeting TREM2 and transferrin receptor (TfR; Ab18 TVD-Ig/αTfR) improved Ab brain entry by more than 10-fold with a broad brain parenchyma distribution. Weekly treatment of 5XFAD mice (a model of AD) with Ab18 TVD-Ig/αTfR showed a considerable reduction of amyloid burden with increased microglia migration to and phagocytosis of amyloid plaques, improved synaptic and neuronal marker intensity, improved cognitive functions, reduced endogenous tau hyperphosphorylation, and decreased phosphorylated neurofilament H immunostaining. This study demonstrated the feasibility of engineering multivalent TREM2 agonistic Ab coupled with TfR-mediated brain delivery to enhance microglia functions and reduce amyloid pathology in vitro and in vivo. This Ab engineering approach enables the development of effective TREM2-targeting therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos , Modelos Animales de Enfermedad , Glicoproteínas de Membrana , Ratones , Placa Amiloide/patología , Receptores Inmunológicos
12.
Mol Neurodegener ; 17(1): 44, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717259

RESUMEN

BACKGROUND: Microglia plays crucial roles in Alzheimer's disease (AD) development. Triggering receptor expressed on myeloid cells 2 (TREM2) in association with DAP12 mediates signaling affecting microglia function. Here we study the negative regulation of TREM2 functions by leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2), an inhibitory receptor bearing ITIM motifs. METHODS: To specifically interrogate LILRB2-ligand (oAß and PS) interactions and microglia functions, we generated potent antagonistic LILRB2 antibodies with sub-nanomolar level activities. The biological effects of LILRB2 antagonist antibody (Ab29) were studied in human induced pluripotent stem cell (iPSC)-derived microglia (hMGLs) for migration, oAß phagocytosis, and upregulation of inflammatory cytokines. Effects of the LILRB2 antagonist antibody on microglial responses to amyloid plaques were further studied in vivo using stereotaxic grafted microglia in 5XFAD mice. RESULTS: We confirmed the expression of both LILRB2 and TREM2 in human brain microglia using immunofluorescence. Upon co-ligation of the LILRB2 and TREM2 by shared ligands oAß or PS, TREM2 signaling was significantly inhibited. We identified a monoclonal antibody (Ab29) that blocks LILRB2/ligand interactions and prevents TREM2 signaling inhibition mediated by LILRB2. Further, Ab29 enhanced microglia phagocytosis, TREM2 signaling, migration, and cytokine responses to the oAß-lipoprotein complex in hMGL and microglia cell line HMC3. In vivo studies showed significantly enhanced clustering of microglia around plaques with a prominent increase in microglial amyloid plaque phagocytosis when 5XFAD mice were treated with Ab29. CONCLUSIONS: This study revealed for the first time the molecular mechanisms of LILRB2-mediated inhibition of TREM2 signaling in microglia and demonstrated a novel approach of enhancing TREM2-mediated microglia functions by blocking LILRB2-ligand interactions. Translationally, a LILRB2 antagonist antibody completely rescued the inhibition of TREM2 signaling by LILRB2, suggesting a novel therapeutic strategy for improving microglial functions.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ligandos , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptores Inmunológicos/metabolismo
13.
Nat Commun ; 12(1): 2662, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976218

RESUMEN

Central leptin action rescues type 1 diabetic (T1D) hyperglycemia; however, the underlying mechanism and the identity of mediating neurons remain elusive. Here, we show that leptin receptor (LepR)-expressing neurons in arcuate (LepRArc) are selectively activated in T1D. Activation of LepRArc neurons, Arc GABAergic (GABAArc) neurons, or arcuate AgRP neurons, is able to reverse the leptin's rescuing effect. Conversely, inhibition of GABAArc neurons, but not AgRP neurons, produces leptin-mimicking rescuing effects. Further, AgRP neuron function is not required for T1D hyperglycemia or leptin's rescuing effects. Finally, T1D LepRArc neurons show defective nutrient sensing and signs of cellular energy deprivation, which are both restored by leptin, whereas nutrient deprivation reverses the leptin action. Our results identify aberrant activation of LepRArc neurons owing to energy deprivation as the neural basis for T1D hyperglycemia and that leptin action is mediated by inhibiting LepRArc neurons through reversing energy deprivation.


Asunto(s)
Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hiperglucemia/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Receptores de Leptina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Glucemia/metabolismo , Encéfalo/citología , Encéfalo/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/sangre , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Infusiones Intraventriculares , Leptina/administración & dosificación , Masculino , Ratones Transgénicos , Neuronas/efectos de los fármacos , Receptores de Leptina/genética , Transducción de Señal/efectos de los fármacos
14.
Genesis ; 48(11): 628-34, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20824628

RESUMEN

Cre-loxP technology enables specific examination of the function and development of individual nuclei in the complex brain network. However, for most brain regions, the utilization of this technique has been hindered by the lack of mouse lines with Cre expression restricted to these regions. Here, we identified brain expressions of three transgenic Cre lines previously thought to be pancreas-specific. Cre expression driven by the rat-insulin promoter (Rip-Cre) was found mainly in the arcuate nucleus, and to a lesser degree in other hypothalamic regions. Cre expression driven by the neurogenin 3 promoter (Ngn3-Cre mice) was found in the ventromedial hypothalamus. Cre expression driven by the pancreas-duodenum homeobox 1 promoter (Pdx1-Cre) was found in several hypothalamic nuclei, the dorsal raphe and inferior olivary nuclei. Interestingly, Pdx1-Cre mediated deletion of vesicular GABA transporter led to postnatal growth retardation while Ngn3-Cre mediated deletion had no effects, suggesting a role for Pdx1-Cre neurons, but not pancreas, in the regulation of postnatal growth. These results demonstrate the potential for these Cre lines to study the function and development of brain neurons.


Asunto(s)
Encéfalo/metabolismo , Integrasas/genética , Páncreas/metabolismo , Regiones Promotoras Genéticas/fisiología , Animales , Encéfalo/embriología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos/genética , Embarazo , Ratas , Transgenes/genética
15.
Neurosignals ; 18(1): 49-56, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20814222

RESUMEN

Hepatocyte growth factor (HGF) and its receptor c-Met play pivotal roles in post-traumatic regeneration of the nervous system. However, following peripheral nerve injury, the role and regulation of the HGF/c-Met system is less clear. Therefore, using a sciatic nerve ligation (SNL) model, spatiotemporal changes in HGF and c-Met expression were detected in the dorsal root ganglions (DRGs) and lumbar spinal cords of adult rats. HGF expression following SNL was found to be significantly decreased in ipsilateral L4-L5 DRGs from day 3 to day 14, with the lowest levels of expression detected on days 5 and 7. In contrast, no significant change in HGF expression was detected in the lumbar spinal cords. c-Met expression in ipsilateral L4-L5 DRGs and within the ipsilateral dorsal horn was found to be significantly up-regulated following SNL, particularly from day 5 to day 14, with peak levels of expression detected on days 7 and 14. In contrast, c-Met levels following SNL consistently remained stable in the spinal ventral horn. These findings suggest that the HGF/c-Met system is spatiotemporally regulated by a unique pattern of signaling pathways induced by peripheral nerve injury, and these pathways have a role in promoting the survival of injured neurons, especially adult DRG sensory neurons.


Asunto(s)
Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Neuropatía Ciática/patología , Médula Espinal/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Lateralidad Funcional , Proteína Ácida Fibrilar de la Glía/metabolismo , Factor de Crecimiento de Hepatocito/genética , Masculino , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Factores de Tiempo
16.
Brain Behav Immun ; 24(1): 138-52, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19765643

RESUMEN

Aging is often accompanied by increased levels of inflammatory molecules in the organism, but age-related changes in the brain response to inflammatory challenges still require clarification. We here investigated in mice whether cytokine signaling and T-cell neuroinvasion undergo age-related changes. We first analyzed the expression of molecules involved in T-cell infiltration and cytokine signaling regulation in the septum and hippocampus of 2-3 months and 20- to 24-month-old mice at 4h after intracerebroventricular injections of tumor necrosis factor (TNF)-alpha or interferon-gammaversus saline injections. Transcripts of the chemokine CXCL9, intercellular adhesion molecule (ICAM)-1 and suppressor of cytokine signaling molecules (SOCS) 1 and 3 were increased in both age groups after cytokine injection; microglia-derived matrix metalloproteinase (MMP) 12 mRNA was induced in old mice also after control saline injections. Age-related changes in ICAM-1 protein expression and T-cell infiltration were then analyzed in mice of 3-4, 8-9 and 15-16 months at 48h after TNF-alpha injections. ICAM-1 immunoreactivity, and Western blotting in striatum, septum, hippocampus and hypothalamus showed progressive age-related enhancement of TNF-alpha-elicited ICAM-1 upregulation. Double immunofluorescence revealed ICAM-1 expression in microglia and astrocytic processes. CD3(+), CD4(+) and CD8(+) T-cells exhibited progressive age-related increases in brain parenchyma and choroid plexus after cytokine exposure. The findings indicate that the brain responses to inflammatory challenges are not only preserved with advancing age, but also include gradual amplification of ICAM-1 expression and T-cell recruitment. The data highlight molecular and cellular correlates of age-related increase of brain sensitivity to inflammatory stimuli, which could be involved in altered brain vulnerability during aging.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/inmunología , Citocinas/fisiología , Inflamación/patología , Transducción de Señal/fisiología , Linfocitos T/fisiología , Animales , Western Blotting , Citocinas/administración & dosificación , Citocinas/farmacología , Interpretación Estadística de Datos , Inmunohistoquímica , Inyecciones Intraventriculares , Molécula 1 de Adhesión Intercelular/biosíntesis , Molécula 1 de Adhesión Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/biosíntesis , ARN/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Transcripción Genética/fisiología , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/farmacología
17.
Nat Metab ; 2(8): 763-774, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32719538

RESUMEN

The current obesity epidemic faces a lack of mechanistic insights. It is known that the acute activity changes of a growing number of brain neurons rapidly alter feeding behaviour; however, how these changes translate to obesity development and the fundamental mechanism underlying brain neurons in controlling body weight remain elusive. Here, we show that chronic activation of hypothalamic arcuate GABAergic (GABA+), agouti-related protein (AgRP) neurons or arcuate non-AgRP GABA+ neurons leads to obesity, which is similar to the obese phenotype observed in ob/ob mice. Conversely, chronic inhibition of arcuate GABA+, but not AgRP, neurons reduces ageing-related weight gain and corrects ob/ob obesity. These results demonstrate that the modulation of Arc GABA+ neuron activity is a fundamental mechanism of body-weight regulation, and that arcuate GABA+ neurons are the major mediator of leptin action, with a profound and redundant role in obesity development.


Asunto(s)
Núcleo Arqueado del Hipotálamo/patología , Neuronas/patología , Obesidad/patología , Envejecimiento/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Femenino , Leptina/farmacología , Masculino , Ratones , Ratones Obesos , Aumento de Peso , Ácido gamma-Aminobutírico/metabolismo
18.
Nat Commun ; 11(1): 3794, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732906

RESUMEN

Defective rhythmic metabolism is associated with high-fat high-caloric diet (HFD) feeding, ageing and obesity; however, the neural basis underlying HFD effects on diurnal metabolism remains elusive. Here we show that deletion of BMAL1, a core clock gene, in paraventricular hypothalamic (PVH) neurons reduces diurnal rhythmicity in metabolism, causes obesity and diminishes PVH neuron activation in response to fast-refeeding. Animal models mimicking deficiency in PVH neuron responsiveness, achieved through clamping PVH neuron activity at high or low levels, both show obesity and reduced diurnal rhythmicity in metabolism. Interestingly, the PVH exhibits BMAL1-controlled rhythmic expression of GABA-A receptor γ2 subunit, and dampening rhythmicity of GABAergic input to the PVH reduces diurnal rhythmicity in metabolism and causes obesity. Finally, BMAL1 deletion blunts PVH neuron responses to external stressors, an effect mimicked by HFD feeding. Thus, BMAL1-driven PVH neuron responsiveness in dynamic activity changes involving rhythmic GABAergic neurotransmission mediates diurnal rhythmicity in metabolism and is implicated in diet-induced obesity.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano/fisiología , Obesidad/patología , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de GABA-A/metabolismo , Animales , Ritmo Circadiano/genética , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Ratones , Ratones Noqueados , Neuronas/fisiología , Obesidad/genética , Núcleo Hipotalámico Paraventricular/citología
19.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31331938

RESUMEN

The paraventricular hypothalamus (PVH) regulates stress, feeding behaviors and other homeostatic processes, but whether PVH also drives defensive states remains unknown. Here we showed that photostimulation of PVH neurons in mice elicited escape jumping, a typical defensive behavior. We mapped PVH outputs that densely terminate in the ventral midbrain (vMB) area, and found that activation of the PVH→vMB circuit produced profound defensive behavioral changes, including escape jumping, hiding, hyperlocomotion, and learned aversion. Electrophysiological recordings showed excitatory postsynaptic input onto vMB neurons via PVH fiber activation, and in vivo studies demonstrated that glutamate transmission from PVH→vMB was required for the evoked behavioral responses. Photostimulation of PVH→vMB fibers induced cFos expression mainly in non-dopaminergic neurons. Using a dual optogenetic-chemogenetic strategy, we further revealed that escape jumping and hiding were partially contributed by the activation of midbrain glutamatergic neurons. Taken together, our work unveils a hypothalamic-vMB circuit that encodes defensive properties, which may be implicated in stress-induced defensive responses.


Asunto(s)
Reacción de Fuga/fisiología , Mesencéfalo/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Animales , Reacción de Prevención/fisiología , Conducta Animal , Ingestión de Alimentos/fisiología , Ácido Glutámico/fisiología , Masculino , Mesencéfalo/citología , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Optogenética , Núcleo Hipotalámico Paraventricular/citología
20.
Nat Commun ; 10(1): 3446, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371721

RESUMEN

Feeding is known to be profoundly affected by stress-related emotional states and eating disorders are comorbid with psychiatric symptoms and altered emotional responses. The neural basis underlying feeding regulation by stress-related emotional changes is poorly understood. Here, we identify a novel projection from the paraventricular hypothalamus (PVH) to the ventral lateral septum (LSv) that shows a scalable regulation on feeding and behavioral changes related to emotion. Weak photostimulation of glutamatergic PVH→LSv terminals elicits stress-related self-grooming and strong photostimulation causes fear-related escape jumping associated with respective weak and strong inhibition on feeding. In contrast, inhibition of glutamatergic inputs to LSv increases feeding with signs of reduced anxiety. LSv-projecting neurons are concentrated in rostral PVH. LSv and LSv-projecting PVH neurons are activated by stressors in vivo, whereas feeding bouts were associated with reduced activity of these neurons. Thus, PVH→LSv neurotransmission underlies dynamic feeding by orchestrating emotional states, providing a novel neural circuit substrate underlying comorbidity between eating abnormalities and psychiatric disorders.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Distrés Psicológico , Animales , Conducta Animal , Fármacos actuantes sobre Aminoácidos Excitadores , Trastornos de Alimentación y de la Ingestión de Alimentos , Aseo Animal/fisiología , Masculino , Ratones , Modelos Animales , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA