RESUMEN
Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.
Asunto(s)
Líquido Extracelular , Tinta , Nanocompuestos , Agujas , Nanocompuestos/química , Porosidad , Líquido Extracelular/química , AnimalesRESUMEN
STUDY QUESTION: Does severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the frozen-thawed embryo transfer (FET) cycle affect embryo implantation and pregnancy rates? SUMMARY ANSWER: There is no evidence that SARS-CoV-2 infection of women during the FET cycle negatively affects embryo implantation and pregnancy rates. WHAT IS KNOWN ALREADY: Coronavirus disease 2019 (COVID-19), as a multi-systemic disease, poses a threat to reproductive health. However, the effects of SARS-CoV-2 infection on embryo implantation and pregnancy following fertility treatments, particularly FET, remain largely unknown. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study, included women who underwent FET cycles between 1 November 2022 and 31 December 2022 at an academic fertility centre. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women who tested positive for SARS-CoV-2 during their FET cycles were included in the COVID-19 group, while those who tested negative during the same study period were included in the non-COVID-19 group. The primary outcome was ongoing pregnancy rate. Secondary outcomes included rates of implantation, biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy. Multivariate logistic regression models were applied to adjust for potential confounders including age, body mass index, gravidity, vaccination status, and endometrial preparation regimen. Subgroup analyses were conducted by time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) and by level of fever (no fever, fever <39°C, or fever ≥39°C). MAIN RESULTS AND THE ROLE OF CHANCE: A total of 243 and 305 women were included in the COVID-19 and non-COVID-19 group, respectively. The rates of biochemical pregnancy (58.8% vs 62.0%, P = 0.46), clinical pregnancy (53.1% vs 54.4%, P = 0.76), implantation (46.4% vs 46.2%, P = 0.95), early pregnancy loss (24.5% vs 26.5%, P = 0.68), and ongoing pregnancy (44.4% vs 45.6%, P = 0.79) were all comparable between groups with or without infection. Results of logistic regression models, both before and after adjustment, revealed no associations between SARS-CoV-2 infection and rates of biochemical pregnancy, clinical pregnancy, early pregnancy loss, or ongoing pregnancy. Moreover, neither the time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) nor the level of fever (no fever, fever <39°C, or fever ≥39°C) was found to be related to pregnancy rates. LIMITATIONS, REASONS FOR CAUTION: The retrospective nature of the study is subject to possible selection bias. Additionally, although the sample size was relatively large for the COVID-19 group, the sample sizes for certain subgroups were relatively small and lacked adequate power, so these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The study findings suggest that SARS-CoV-2 infection during the FET cycle in females does not affect embryo implantation and pregnancy rates including biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy, indicating that cycle cancellation due to SARS-CoV-2 infection may not be necessary. Further studies are warranted to verify these findings. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2019YFA0802604), National Natural Science Foundation of China (82130046, 82101747), Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SSMU-ZLCX20180401), Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai Sailing Program (21YF1425000), Shanghai's Top Priority Research Center Construction Project (2023ZZ02002), Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161413). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.
Asunto(s)
COVID-19 , Implantación del Embrión , Transferencia de Embrión , Resultado del Embarazo , Índice de Embarazo , SARS-CoV-2 , Humanos , Femenino , Embarazo , COVID-19/epidemiología , Transferencia de Embrión/métodos , Adulto , Estudios Retrospectivos , CriopreservaciónRESUMEN
Multicellular 3D tissue constructs (MTCs) are important in biomedical research due to their capacity to accurately mimic the structure and variation found in real tissues. This study presents a novel bio-orthogonal engineering strategy (BIEN), a transformative scaffold-free approach, to create advanced MTCs. BIEN harnesses the cellular biosynthetic machinery to incorporate bio-orthogonal azide reporters into cell surface glycoconjugates, followed by a click reaction with multiarm PEG, resulting in rapid assembly of MTCs. The implementation of this cutting-edge strategy culminates in the formation of uniform, heterogeneous spheroids, characterized by a high degree of intercellular junction and pluripotency. Remarkably, MTCs simulate tumor features, ensure cell heterogeneity, and significantly improve the subcutaneous xenograft model after transplantation, thereby bolstering both in vitro and in vivo research models. In conclusion, the utilization of the bio-orthogonal engineering strategy as a scaffold-free method to generate superior MTCs holds promising potential for driving advancements in cancer research.
Asunto(s)
Esferoides Celulares , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Membrana Celular , Bioingeniería , Andamios del Tejido/químicaRESUMEN
Recent progress in cuproptosis sheds light on the development of treatment approaches for advancing sonodynamic therapy (SDT) due to its unique cell death mechanism. Herein, we elaborately developed an intelligent cell-derived nanorobot (SonoCu), composed of macrophage-membrane-camouflaged nanocarrier encapsulating copper-doped zeolitic imidazolate framework-8 (ZIF-8), perfluorocarbon, and sonosensitizer Ce6, for synergistically triggering cuproptosis-augmented SDT. SonoCu not only improved tumor accumulation and cancer-cell uptake through cell-membrane camouflaging but responded to ultrasound stimuli to enhance intratumor blood flow and oxygen supply, which consequently overcame treatment barriers and activated sonodynamic cuproptosis. Importantly, the SDT effectiveness could be further amplified by cuproptosis through multiple mechanisms, including reactive oxygen species accumulation, proteotoxic stress, and metabolic regulation, which synergistically sensitized cancer cell death. Particularly, SonoCu exhibited ultrasound-responsive cytotoxicity against cancer cells but not healthy cells, endowing it with good biosafety. Therefore, we present the first anticancer combination of SDT and cuproptosis, which may inspire studies pursuing a rational multimodal treatment strategy.
Asunto(s)
Apoptosis , Neoplasias , Terapia por Ultrasonido , Humanos , Muerte Celular , Neoplasias/terapia , Especies Reactivas de Oxígeno/metabolismo , Ultrasonografía , CobreRESUMEN
A light-activated chemically reactive fibrous patch (ChemPatch) with tissue adhesion and wound healing activity was developed for preventing postoperative peritoneal adhesion. ChemPatch was constructed by an integrative electrospinning fabrication strategy, generating multifunctional PCL-NHS fibers encapsulating antioxidant curcumin and MnO2 nanoparticles. ChemPatch exhibited excellent photothermal conversion, which not only reformed the physical state to match the tissue but also improved conjugation between ChemPatch and tissues, allowing for strong attachment. Importantly, ChemPatch possessed good antioxidant and radical scavenging activity, which protected cells in an oxidative microenvironment and improved tissue regeneration. Particularly, ChemPatch acted as a multifunctional barrier and could not only promote reepithelialization and revascularization in wound defect model but simultaneously ameliorate inflammation and prevent postoperative peritoneal adhesion in a mouse cecal defect model. Thus, ChemPatch represents a dual-active bioadhesive barrier for reducing the incidence and severity of peritoneal adhesions.
Asunto(s)
Cirugía General , Complicaciones Posoperatorias , Mallas Quirúrgicas , Adherencias Tisulares , Cicatrización de Heridas , Cavidad Peritoneal/cirugía , Complicaciones Posoperatorias/prevención & control , Adherencias Tisulares/prevención & control , Luz , Mallas Quirúrgicas/normas , Cirugía General/instrumentación , Cirugía General/métodos , Curcumina/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Óxido de Magnesio/uso terapéutico , Resultado del Tratamiento , Ratones Endogámicos ICR , Animales , Ratones , Línea CelularRESUMEN
The tendency of hepatocarcinoma to metastasize results in a high rate of mortality, making it a hot research topic in cancer studies. Although an acidic tumor microenvironment has been proven to promote cancer metastasis, the underlying regulatory mechanisms remain poorly defined. Here, we found that acidic conditions significantly enhanced cell migration and invasion ability in hepatocellular carcinoma, and the expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) was distinctly upregulated in acid-treated cells. In addition, siRNA-mediated knockdown of ROR1 could effectively inhibit acid-induced cell migration, invasion and epithelial-mesenchymal transition (EMT). Importantly, neutralization of acidic environments with NaHCO3 could downregulate acid-stimulated ROR1 expression, thereby retarding cell metastatic potential. Notably, the formation of metastatic nodules was significantly increased after intrapulmonary injection of acid-stimulated cancer cells, and this was inhibited by pretreating with NaHCO3. In summary, we reveal that an acidic tumor microenvironment modulates ROR1 expression to promote tumor metastasis, providing not only a better understanding of molecular mechanisms related to metastasis, but also a promising target for tumor management.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Metástasis de la Neoplasia , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Microambiente TumoralRESUMEN
Zinc has been proven to interweave with many critical cell death pathways, and not only exhibits potent anticancer activity solely, but sensitizes cancer cells to anticancer treatment, making zinc supplementation ideal for boosting odds against malignancy. Herein, a smart nanorobot (termed as Zinger) is developed, composed of iRGD-functionalized liposome encapsulating black phosphorus nanosheet (BPNs) doped zeolite imidazole framework-8 (BPN@ZIF-8), for advancing zinc-promoted photodynamic therapy (PDT). Zinger exhibits photo-triggered sequential mitochondria-targeting ability, and can induce zinc overload-mediated mitochondrial stress, which consequently sensitized tumor to PDT through synergistically modulating reactive oxygen species (ROS) production and p53 pathway. It is identified that Zinger selectively triggered intracellular zinc overload and photodynamic effect in cancer cells, which together enhanced PDT treatment outcomes. Importantly, Zinger shows high efficacy in overcoming various treatment barriers, allowing for effectively killing cancer cells in the complex circumstances. Particularly, Zinger exhibits good tumor accumulation, penetration, and even cell uptake, and can respond to light stimulation to eliminate tumors while avoiding normal tissues, thereby prolonging survival of tumor-bearing mice. Therefore, the study provides a novel insight in the development of novel zinc-associated therapy for advancing cancer treatment approaches.
Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Fototerapia , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Homeostasis , Mitocondrias/metabolismo , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéuticoRESUMEN
Despite the great promise, cell therapy still faces practical challenges because of the scarcity of a reliable cell source. Herein, a bioinspired 3D dynamic culture system (CellMatrix) with rational structure, composite and function, was developed for improving cell supply. CellMatrix was composed of unique core-shell fibers with a core of black phosphorus-incorporated fibroin and a shell of sericin, which together formed a 3D silkworm cocoon-mimicking structure via a bottom-up fabrication technique. CellMatrix not only provided optimal engineered biomimetic niche to facilitate cell growth but exhibited good photothermal conversion to dynamically regulate cell fates. Importantly, cell-CellMatrix construct could be directly implanted into defected tissues and improved tissue remodeling. Meanwhile, CellMatrix displayed good ice resistance and thermal conductivity, which maximally maintained cell viability and proliferation after the freeze-thawing process, allowing for storing precious cells and cell-CellMatrix construct. Thus, CellMatrix represents an all-in-one biomimetic platform for the culture-production-storage of therapeutically qualified cells.
Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Diferenciación Celular , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
An effective method to identify c-di-GMP may significantly facilitate the exploration of its signaling pathways and bacterial pathogenesis. Herein, we have developed the first conjugated polymer-amplified RNA aptamer NanoKit with a unique core-shell-shell architecture, which combines the advantages of high selectivity of RNA aptamers and high sensitivity of strong fluorescence resonance energy transfer (FRET) effect, for precisely detecting c-di-GMP. We identified that NanoKit could selectively detect c-di-GMP with a low detection limit of 50 pM. Importantly, NanoKit could identify bacterial species and physiological states, such as planktonic, biofilm, and even antibiotic-resistance, on the basis of their different c-di-GMP expression patterns. Particularly, NanoKit could distinguish bacterial infection and inflammation and identify Pseudomonas aeruginosa associated pneumonia and sepsis, thereby guiding treatment choice and monitoring antibiotic effects. Therefore, NanoKit provides a promising strategy to rapidly identify c-di-GMP and its associated diseases and may benefit for pathophoresis management.
Asunto(s)
Aptámeros de Nucleótidos , Proteínas Bacterianas/genética , Biopelículas , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Transferencia Resonante de Energía de FluorescenciaRESUMEN
Current three-dimensional (3D) cell culture systems mainly rely on static cell culture and lack the ability to thoroughly manage cell intrinsic behaviors and biological characteristics, leading to unsatisfied cell activity. Herein, we have developed photoactive 3D-printed hypertensile metamaterials based dynamic cell culture system (MetaFold) for guiding cell fate. MetaFold exhibited high elasticity and photothermal conversion efficiency due to its metapattern architecture and micro/nanoscale polydopamine coating, allowing for responding to mechanical and light stimulation to construct dynamic culture conditions. In addition, MetaFold possessed excellent cell adhesion capability and could promote cell viability and function under dynamic stimulation, thereby maximizing cell activity. Importantly, MetaFold could improve the differentiation efficacy of stem cells into cardiomyocytes and even their maturation, offering high-quality precious candidates for cell therapy. Therefore, we present a dual stimuli-responsive dynamic culture system, which provides a physiologically realistic environment for cell culture and biological study.
Asunto(s)
Impresión Tridimensional , Andamios del Tejido , Técnicas de Cultivo de Célula , Diferenciación Celular , Células MadreRESUMEN
Objective: To explore the effect of different chemotherapy schemes on the prognosis, immune function and adverse reactions of breast cancer patients with low HER-2 expression after surgery. Methods: A retrospective analysis was carried out on the clinical data of 60 breast cancer patients with low HER-2 expression in Wuxi No.2 people's Hospital from January 2018 to December 2019. The enrolled patients were divided into two groups according to the different chemotherapy schemes. Patients in the DC group were treated with polyethylene glycol-coated liposome-encapsulated doxorubicin+cyclophosphamide, and those in the TC group were treated with TC (docetaxel+cyclophosphamide). Further comparison was performed on the difference in prognosis, immune function and adverse reaction between the two groups after different chemotherapy schemes. Results: After four courses of treatment, the IgG, CD4+ and CD4+/CD8+ values in the DC group after treatment were higher than those before treatment, while the IgG, CD3+ and CD4+values in the TC group after treatment were lower than those before treatment(P<0.05). Meanwhile, the IgG, CD4+ and CD4+/CD8+ values in the DC group were better than those in the TC group after treatment(P<0.05). During the treatment, the adverse reactions of leukopenia, alopecia, nausea and vomiting in the DC group were significantly lower than those in the TC group(P<0.05). Conclusion: The chemotherapy combination of liposome-encapsulated doxorubicin+cyclophosphamide can significantly improve immune function and greatly reduce the occurrence of adverse reactions in early-stage breast cancer patients with low HER-2 expression after surgery. It has the same effect as docetaxel+cyclophosphamide in improving the prognosis of patients.
RESUMEN
Ferroptosis is a type of nonapoptotic cell death and is gradually emerging as an important anticancer treatment. However, its therapeutic efficacy is impaired by low intracellular levels of reactive oxygen species (ROS) and long-chain polyunsaturated fatty acids, significantly limiting its therapeutic potential. Herein, a multimodal strategy to improve ferroptosis is presented, in which a state-of-art engineered erythrocyte, termed as sonodynamic amplified ferroptosis erythrocyte (SAFE), is developed for simultaneously activating ferroptosis and oxygen-riched sonodynamic therapy (SDT). SAFE is composed of internalizing RGD peptide and red blood cell membrane hybrid camouflaged nanocomplex of hemoglobin, perfluorocarbon, ferroptosis activator (dihomo-γ-linolenic acid, DGLA), and sonosensitizer verteporfin. It is identified that SAFE, under ultrasound stimulation, can not only substantially supply oxygen to overcome tumor hypoxia associated therapeutic resistance, but effectively activate ferroptosis through the coeffect of SDT triggered ROS production and DGLA mediated lipid peroxidation. In vivo studies reveal that SAFE selectively accumulates in tumor tissues and induces desirable anticancer effects under mild ultrasound stimulation. Importantly, SAFE can effectively inhibit tumor growth with minimal invasiveness, resulting in a prolonged survival period of mice. Therefore, a multimodal ferroptosis therapy driven by oxygen-riched sonodynamic peroxidation of lipids, significantly advancing synergistic cancer treatment, is presented.
Asunto(s)
Neoplasias de la Mama , Ferroptosis , Terapia por Ultrasonido , Animales , Biomimética , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Humanos , Peroxidación de Lípido , Ratones , Especies Reactivas de Oxígeno/metabolismo , Hipoxia Tumoral , Terapia por Ultrasonido/métodosRESUMEN
Although small-molecule agonists of stimulator of interferon genes (STING) show significance in activating the immune system, the dynamic process involved in ligands activating STING remains unclear. Herein, we developed a biochemical strategy, integrating computer simulation and a biochemical engineering approach, to reveal the interaction mechanism between STING and 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an agonist that activates the TANK binding kinase 1-interferon regulatory factor 3 signaling pathway. Specifically, inspired by an analysis of the STING-DMXAA crystal structure, we designed and synthesized DMXAA derivatives to investigate the STING-DMXAA binding model. We identified that the carboxyl moiety of DMXAA was a major pharmacophore responsive to STING activation. In particular, the loss of hydrogen bond interaction between the carboxylic acid of DMXAA and the side chain Thr262 of STING led to STING inhibition. DMXAA N-methyl amide derivative (DNHM) exhibited good inhibitor activity, inhibited STING-mediated interferon production in vitro and in vivo, and effectively attenuated STING-associated inflammatory diseases. Therefore, we provide a new insight into STING-ligand interactions, which may improve the understanding of STING biology.
Asunto(s)
Proteínas de la Membrana , Xantonas , Proteínas de la Membrana/química , Ligandos , Simulación por Computador , Xantonas/farmacología , Xantonas/química , Transducción de Señal , Interferones/farmacologíaRESUMEN
Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
Asunto(s)
Cadherinas/antagonistas & inhibidores , Reprogramación Celular , Transición Epitelial-Mesenquimal , Células Madre Pluripotentes Inducidas , Nanopartículas del Metal , Animales , Cadherinas/genética , Fibroblastos , Oro , RatonesRESUMEN
Accurate sweat glucose detection is a promising alternative to invasive finger-prick blood tests, allowing for self-monitoring of blood glucose with good patient compliance. In this study, we have developed a tandem catalytic system, termed as a luminescent "nanochip" (LAON), which was composed of gold nanoparticles (AuNPs) and N-(aminobutyl)-N-(ethylisoluminol) (ABEI)-engineered oxygen-doped carbon nitride (O-g-C3N4), for chemiluminescent detection of sweat glucose. The LAON exhibits dual catalytic activity of glucose oxidase and peroxidase and can not only oxidize glucose to generate H2O2 but catalyze H2O2-mediated luminol chemiluminescence, resulting in sensitive detection of glucose. We identify that the LAON can precisely detect glucose with a detection limit of 0.1 µM, enabling us to measure glucose levels in different biological samples. Particularly, the LAON is capable of sensitively and accurately monitoring dynamic changes in sweat glucose during exercise. Therefore, the LAON provides an alternative approach to supersede invasive blood tests and may improve the management of diabetes mellitus.
Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Glucosa , Oro , Humanos , Peróxido de Hidrógeno , Luminiscencia , Mediciones Luminiscentes , Luminol , SudorRESUMEN
Despite the ability of microbubble contrast agents to improve ultrasound diagnostic performance, their application potential is limited due to low stability, fast clearance, and poor tissue permeation. This study presents a promising nanosized phase-changeable erythrocyte (Sonocyte), composed of liposomal dodecafluoropentane coated with multilayered red blood cell membranes (RBCm), for improving ultrasound assessments. Sonocyte is the first RBCm-functionalized ultrasound contrast agent with uniform nanosized morphology, and exhibits good stability, systemic circulation, target-tissue accumulation, and even ultrasound-responsive phase transition, thereby satisfying the inherent requirement of ultrasound imaging. It is identified that Sonocyte displays similar sensitivity as microbubble SonoVue, a clinical ultrasound contrast agent, for effectively detecting normal parenchyma and hepatic necrosis. Importantly, compared with SonoVue lacking of ability to detect tumors, Sonocyte can identify tumors with high sensitivity and specificity due to superior tumor accumulation and penetration. Therefore, Sonocyte exhibits superior capabilities over SonoVue, endowing with a great clinical application potential.
Asunto(s)
Medios de Contraste , Microburbujas , Membrana Eritrocítica , Fosfolípidos , UltrasonografíaRESUMEN
Cancer cells are susceptible to oxidative stress; therefore, selective elevation of intracellular reactive oxygen species (ROS) is considered as an effective antitumor treatment. Here, a liposomal formulation of dichloroacetic acid (DCA) and metal-organic framework (MOF)-Fe2+ (MD@Lip) has been developed, which can efficiently stimulate ROS-mediated cancer cell apoptosis in vitro and in vivo. MD@Lip can not only improve aqueous solubility of octahedral MOF-Fe2+ , but also generate an acidic microenvironment to activate a MOF-Fe2+ -based Fenton reaction. Importantly, MD@Lip promotes DCA-mediated mitochondrial aerobic oxidation to increase intracellular hydrogen peroxide (H2 O2 ), which can be consequently converted to highly cytotoxic hydroxyl radicals (â¢OH) via MOF-Fe2+ , leading to amplification of cancer cell apoptosis. Particularly, MD@Lip can selectively accumulate in tumors, and efficiently inhibit tumor growth with minimal systemic adverse effects. Therefore, liposome-based combination therapy of DCA and MOF-Fe2+ provides a promising oxidative stress-associated antitumor strategy for the management of malignant tumors.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ácido Dicloroacético/farmacología , Compuestos Ferrosos/farmacología , Estructuras Metalorgánicas/farmacología , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ácido Dicloroacético/administración & dosificación , Sinergismo Farmacológico , Compuestos Ferrosos/administración & dosificación , Compuestos Ferrosos/química , Humanos , Liposomas/farmacología , Estructuras Metalorgánicas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo/fisiología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Mitoxantrone (MTO) is a potent drug used to treat breast cancer; however, efforts to expand its clinical applicability have been restricted because of its high risk for cardiotoxicity. In this study, we successfully conjugated MTO or folic acid (FA) to a synthesized D-α-tocopheryl polyethylene glycol 2000 succinate (TPGS2k), herein, shortened to MCT and FCT, respectively. The two produced conjugates could self-assemble to form MCT micelles or MCT/FCT mixed micelles (FMCT) aiming to lower systemic toxicity, enhance entrapment efficiency, and provide a platform for targeted delivery. Moreover, these micellar materials showed a significantly low CMC and could be used to load MTO. The diameters of MTO-loaded micelles (MTO-MCT and MTO-FMCT) were less than 100 nm with a negative zeta potential. We further characterized the pH-responsive drug release of MTO-MCT and MTO-FMCT and then assessed their cellular uptake and antitumor efficacy in human breast cancer cell lines (MCF-7) via confocal microscopy, flow cytometry, and cytotoxicity studies. All the results revealed that both MTO-MCT and MTO-FMCT increased drug loading and entrapment efficiency and possessed sufficient pH-sensitive release. Additionally, MTO-FMCT displayed an improved uptake through folate-mediated endocytosis, resulting in a higher cytotoxic effect on MCF-7 cells compared with that of MTO-MCT. Meanwhile, both MTO-MCT and MTO-FMCT exhibited a low toxicity on hCMEC/D3 normal cells. More importantly, pharmacokinetic study demonstrated that, in comparison with free MTO injection, MTO-MCT and MTO-FMCT, respectively, achieved half-lives 11.5 and 13 times longer and a 9.7- and 5.8-fold increase in AUC. In vivo, both MTO-MCT and MTO-FMCT formulations significantly prolonged the survival time of MCF-7 tumor-bearing mice and had a better efficacy/toxicity ratio. Promisingly, MTO-FMCT micelles remarkably increased MTO accumulation in tumors in vivo, induced higher tumor cell apoptosis, and showed lower toxicity toward major organs. These results imply that MTO-FMCT may be used as a potential drug delivery system for breast cancer targeted therapy.
Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Ácido Fólico/administración & dosificación , Mitoxantrona/administración & dosificación , Vitamina E/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/fisiología , Femenino , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Micelas , Ratas , Ratas Sprague-DawleyRESUMEN
In this study, a dual-targeting drug delivery system based on bovine serum albumin nanoparticles (BSA-NPs) modified with both lactoferrin (Lf) and mPEG2000 loading doxorubicin (DOX) was designed, and its blood-brain barrier (BBB) penetration and brain glioma cells targeting properties were explored. BSA-NPs were prepared by a desolvation technique, and mPEG2000 was incorporated onto the surface of BSA-NPs by reacting with the free amino-group of BSA to form mPEG2000-modified BSA-NPs (P2000-NPs). Finally, Lf-modified P2000-NPs (Lf-NPs) was obtained by absorbing Lf onto the surface of P2000-NPs via the positive and negative charges interaction at physiological pH. Three levels of mPEG2000 and Lf-modified NPs were prepared and characterized, respectively. The uptake and potential cytotoxicity of different DOX preparations in vitro by the primary brain capillary endothelial cells (BCECs) and glioma cells (C6) were investigated. The dual-targeting effects were studied on the BBB model in vitro, BCECs/C6 glioma coculture model in vitro, and C6 glioma-bearing rats in vivo, respectively. The results exhibited that, with the increase of the amount of both mPEG2000 and Lf, the particle size of NPs increased and its zeta potential decreased. The in vivo pharmacokinetics study in healthy rats exhibited that P2000-NPs with a high level of mPEG2000 (P2000H-NPs) had longer circulation time in vivo. Compared to other NPs, Lf-NPs with high level of both Lf and mPEG2000 (LfH-NPs) showed the strongest cytotoxicity and the highest effectiveness in the uptake both in BCECs and C6 as well as improved the dual-targeting effects. Body distribution of DOX in different formulations revealed that LfH-NPs could significantly increase the accumulation of DOX in the brain, especially at 2 h postinjection (P < 0.05). In conclusion, Lf-NPs were a prospective dual-targeting drug delivery system for effective targeting therapy of brain gliomas.