RESUMEN
BACKGROUND: The objective of the present study was to evaluate the role of the TGFß/PDCD4/AP-1 pathway in nasopharyngeal carcinoma (NPC) and its relationship to NPC prognosis. METHODS: NPC tissues collected from 66 NPC patients were compared to 17 nasopharyngeal mucosa biopsy specimens collected as normal tissues. Immunohistochemical staining was performed to assess expression of transforming growth factor-ß receptor I (TGFßRI), programmed cell death 4 (PDCD4) and activator protein-1 (AP-1). The Kaplan-Meier method was applied to evaluate NPC patient overall survival (OS) and progression-free-survival (PFS). Cox regression analysis was used to estimate independent prognostic factors for NPC. The human NPC cell line CNE2 was selected and treated with SB431542, an inhibitor of TGFßRI; expression of TGFßRI and PDCD4 in CNE2 cells was determined by western blotting. NPC tissues showed higher expression of TGFßRI and AP-1 but lower expression of PDCD4 than normal tissues (all P < 0.05). RESULTS: The results of Kaplan-Meier analysis showed that TGFßRI-positive patients and AP-1-positive patients had shorter OS and PFS than TGFßRI-negative patients and AP-1-negative patients; additionally, PDCD4-positive patients had higher OS and PFS than PDCD4-negative patients. Cox regression analysis revealed that advanced tumor stage, overexpression of TGFßRI and AP-1, and low expression of PDCD4 were unfavorable factors influencing OS and PFS in NPC patients. Compared with the control group, expression of TGFßRI decreased and that of PDCD4 increased significantly in CNE2 cells treated with the inhibitor (all P < 0.05). These findings indicate that the TGFß/PDCD4/AP-1 pathway may be associated with NPC development and progression. CONCLUSION: High expression of TGFßRI and AP-1 and low expression of PDCD4 may be unfavorable prognostic factors for NPC.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/patología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adulto , Anciano , Proteínas Reguladoras de la Apoptosis/análisis , Carcinoma/patología , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Nasofaringe/metabolismo , Pronóstico , Proteínas de Unión al ARN/análisis , Factor de Transcripción AP-1/análisis , Factor de Crecimiento Transformador beta/análisisRESUMEN
Esophageal cancer (EC) remains an important health problem in China. In the present study, through the use of siRNA, specific gene knockdown of transcription factor 3 gene (TCF-3) was achieved in vitro and the effect of TCF-3 gene on human EC Eca-109 cell proliferation and apoptosis. Eca-109 cells were treated using negative control (NC) of siRNA against TCF-3 (siTCF-3) and siTCF-3 group. Colony formation assay was used to detect the colony formation ability in Eca-109 cells. MTT assay was used to measure the cell growth and viability, whereas BrDU assay was used to evaluate cell proliferation, and flow cytometry (FCM) to assess cell apoptosis. Reverse-transcription quantitative PCR (RT-qPCR) was applied to measure TCF-3 gene expression. Protein expressions of TCF-3, apoptosis-related proteins, Bcl-2, Bax, and caspase-3 were determined using Western blotting. Transfection of siTCF-3 successfully down-regulated TCF-3 gene expression. In addition, siTCF-3, reduced Eca-109 cell viability and proliferation, in a time-dependent manner, and inhibited progression of cell cycle from G0/G1 to S-stage. When treated with siTCF-3, the Eca-109 cells exhibited increased apoptosis, with up-regulated cleaved caspase and Bax expressions, whereas Bcl-2 expression was down-regulated. The present study shows that TCF-3 gene silencing inhibits Eca-109 cell growth and proliferation, suppresses cell cycle progression, and promotes apoptosis, which might serve as a new objective for EC treatment.