Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 628(8007): 391-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408487

RESUMEN

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Asunto(s)
Tipificación del Cuerpo , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología
2.
Nature ; 573(7774): 421-425, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511693

RESUMEN

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.


Asunto(s)
Amnios/embriología , Estratos Germinativos/embriología , Modelos Biológicos , Células Madre Pluripotentes/citología , Amnios/citología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Estratos Germinativos/citología , Humanos , Embarazo , Línea Primitiva/citología
3.
Angew Chem Int Ed Engl ; 63(20): e202401921, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38498603

RESUMEN

In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.


Asunto(s)
Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Microburbujas , Ingeniería Metabólica
4.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37960446

RESUMEN

To prevent the potential failure of the surface acoustic wave (SAW) atomizer caused by the concentration of thermal stresses, this study investigates the thermal elevation process inherent to the operation of the surface wave atomizer. Subsequently, a method for temperature regulation is proposed. By collecting the temperature rise data of SAW atomizers with water, olive oil, and glycerol at 5/6/7 Watts (W) of power, the temperature curves of the atomizer surface under different conditions are obtained, and the stress changes in the working process are simulated additionally. The results indicate that although the stress generated by surface acoustic wave atomizers varies for different media, there is always a problem of rapid heating during the initial working stage in all cases. To address the above issues, this study analyzed the time when the maximum stress occurred and proposed control methods based on experimental data. The simulation results show that by controlling the driving power within 4 s after the start of atomization, the problem of excessive stress during the heating stage can be avoided. Finally, the feasibility of the control method was verified through a simple power control method (limiting the driving power to 3 W in the first 2 s), proving that this method can effectively reduce the thermal stress during the working process of the atomizer and prevent the atomizer from cracking.

5.
Nat Mater ; 17(7): 633-641, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29784997

RESUMEN

Classic embryological studies have successfully applied genetics and cell biology principles to understand embryonic development. However, it remains unresolved how mechanics, as an integral driver of development, is involved in controlling tissue-scale cell fate patterning. Here we report a micropatterned human pluripotent stem (hPS)-cell-based neuroectoderm developmental model, in which pre-patterned geometrical confinement induces emergent patterning of neuroepithelial and neural plate border cells, mimicking neuroectoderm regionalization during early neurulation in vivo. In this hPS-cell-based neuroectoderm patterning model, two tissue-scale morphogenetic signals-cell shape and cytoskeletal contractile force-instruct neuroepithelial/neural plate border patterning via BMP-SMAD signalling. We further show that ectopic mechanical activation and exogenous BMP signalling modulation are sufficient to perturb neuroepithelial/neural plate border patterning. This study provides a useful microengineered, hPS-cell-based model with which to understand the biomechanical principles that guide neuroectoderm patterning and hence to study neural development and disease.


Asunto(s)
Tipificación del Cuerpo , Placa Neural/citología , Células Madre Pluripotentes/citología , Diferenciación Celular , Humanos , Modelos Biológicos , Transducción de Señal
6.
Small ; 14(50): e1803137, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30427572

RESUMEN

Early human embryogenesis is a dynamic developmental process, involving continuous and concomitant changes in gene expression, structural reorganization, and cellular mechanics. However, the lack of investigation methods has limited the understanding of how cellular mechanical properties change during early human embryogenesis. In this study, ultrasound actuation of functionalized microbubbles targeted to integrin (acoustic tweezing cytometry, ATC) is employed for in situ measurement of cell stiffness during human embryonic stem cell (hESC) differentiation and morphogenesis. Cell stiffness, which is regulated by cytoskeleton structure, remains unchanged in undifferentiated hESCs, but significantly increases during neural differentiation. Further, using the recently established in vitro 3D embryogenesis models, ATC measurements reveal that cells continue to stiffen while maintaining pluripotency during epiblast cyst formation. In contrast, during amniotic cyst formation, cells first become stiffer during luminal cavity formation, but softens significantly when cells differentiate to form amniotic cysts. These results suggest that cell stiffness changes not only due to 3D spatial organization, but also with cell fate change. ATC therefore provides a versatile platform for in situ measurement of cellular mechanical property, and cell stiffness may be used as a mechanical biomarker for cell lineage diversification and cell fate specification during embryogenesis.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Integrinas/química , Microburbujas , Diferenciación Celular/fisiología , Humanos , Morfogénesis/fisiología , Fenotipo
7.
Nat Mater ; 16(4): 419-425, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27941807

RESUMEN

Amniogenesis-the development of amnion-is a critical developmental milestone for early human embryogenesis and successful pregnancy. However, human amniogenesis is poorly understood due to limited accessibility to peri-implantation embryos and a lack of in vitro models. Here we report an efficient biomaterial system to generate human amnion-like tissue in vitro through self-organized development of human pluripotent stem cells (hPSCs) in a bioengineered niche mimicking the in vivo implantation environment. We show that biophysical niche factors act as a switch to toggle hPSC self-renewal versus amniogenesis under self-renewal-permissive biochemical conditions. We identify a unique molecular signature of hPSC-derived amnion-like cells and show that endogenously activated BMP-SMAD signalling is required for the amnion-like tissue development by hPSCs. This study unveils the self-organizing and mechanosensitive nature of human amniogenesis and establishes the first hPSC-based model for investigating peri-implantation human amnion development, thereby helping advance human embryology and reproductive medicine.


Asunto(s)
Amnios/metabolismo , Materiales Biomiméticos , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Nicho de Células Madre , Ingeniería de Tejidos/métodos , Amnios/citología , Línea Celular , Humanos , Células Madre Pluripotentes/citología , Medicina Reproductiva/métodos
8.
Sensors (Basel) ; 15(12): 30187-98, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26633419

RESUMEN

A new wireless and passive surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound (OC) detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs) and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA) film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM) and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW)-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP) detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally.

9.
Sensors (Basel) ; 14(11): 20702-12, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25372617

RESUMEN

A novel wireless and passive surface acoustic wave (SAW) based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM) model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements.

10.
Comput Biol Med ; 182: 109103, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244962

RESUMEN

The lung is characterized by high elasticity and complex structure, which implies that the lung is capable of undergoing complex deformation and the shape variable is substantial. Large deformation estimation poses significant challenges to lung image registration. The traditional U-Net architecture is difficult to cover complex deformation due to its limited receptive field. Moreover, the relationship between voxels weakens as the number of downsampling times increases, that is, the long-range dependence issue. In this paper, we propose a novel multilevel registration framework which enhances the correspondence between voxels to improve the ability of estimating large deformations. Our approach consists of a convolutional neural network (CNN) with a two-stream registration structure and a cross-scale mapping attention (CSMA) mechanism. The former extracts the robust features of image pairs within layers, while the latter establishes frequent connections between layers to maintain the correlation of image pairs. This method fully utilizes the context information of different scales to establish the mapping relationship between low-resolution and high-resolution feature maps. We have achieved remarkable results on DIRLAB (TRE 1.56 ± 1.60) and POPI (NCC 99.72% SSIM 91.42%) dataset, demonstrating that this strategy can effectively address the large deformation issues, mitigate long-range dependence, and ultimately achieve more robust lung CT image registration.

11.
ACS Sens ; 9(5): 2395-2401, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38722860

RESUMEN

PdNi alloy thin films demonstrate exceptional hydrogen sensing performance and exhibit significant potential for application in surface acoustic wave (SAW) hydrogen sensors. However, the long-term stability of SAW H2 sensors utilizing PdNi films as catalysts experiences a substantial decrease during operation. In this paper, X-ray photoelectron spectroscopy (XPS) is employed to investigate the failure mechanisms of PdNi thin films under operational conditions. The XPS analysis reveals that the formation of PdO species on PdNi thin films plays a crucial role in the failure of hydrogen sensing. Additionally, density functional theory (DFT) calculations indicate that hydrogen atoms encounter a diffusion energy barrier during the penetration process from the PdNiOx surface to the subsurface region. The identification of PdNi film failure mechanisms through XPS and DFT offers valuable insights into the development of gas sensors with enhanced long-term stability. Guided by these mechanisms, we propose a method to restore the hydrogen sensing response time and magnitude to a certain extent by reducing the partially oxidized surface of the PdNi alloy under a hydrogen atmosphere at 70 °C, thereby restoring Pd to its metallic state with zero valence.


Asunto(s)
Hidrógeno , Níquel , Oxidación-Reducción , Paladio , Sonido , Hidrógeno/química , Paladio/química , Níquel/química , Propiedades de Superficie , Teoría Funcional de la Densidad , Espectroscopía de Fotoelectrones , Aleaciones/química
12.
Cell Stem Cell ; 31(8): 1113-1126.e6, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981471

RESUMEN

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Herein, we develop a human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on the PSM tissues cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and the PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the biochemical and biomechanical events that guide somite formation.


Asunto(s)
Microfluídica , Modelos Biológicos , Células Madre Pluripotentes , Somitos , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Somitos/citología , Somitos/metabolismo , Microfluídica/métodos , Desarrollo Embrionario , Mesodermo/citología , Diferenciación Celular
13.
Nat Commun ; 15(1): 167, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167821

RESUMEN

Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.


Asunto(s)
Células Madre Pluripotentes , Semen , Humanos , Masculino , Células Germinativas/metabolismo , Línea Celular , Transducción de Señal , Diferenciación Celular
14.
Curr Opin Genet Dev ; 82: 102097, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573835

RESUMEN

In vitro stem cell-derived embryo and organ models, termed embryoids and organoids, respectively, provide promising experimental tools to study physiological and pathological processes in mammalian development and organ formation. Most of current embryoid and organoid systems are developed using conventional three-dimensional cultures that lack controls of spatiotemporal extracellular signals. Microfluidics, an established technology for quantitative controls and quantifications of dynamic chemical and physical environments, has recently been utilized for developing next-generation embryoids and organoids in a controllable and reproducible manner. In this review, we summarize recent progress in constructing microfluidics-based embryoids and organoids. Development of these models demonstrates the successful applications of microfluidics in establishing morphogen gradients, accelerating medium transport, exerting mechanical forces, facilitating tissue coculture studies, and improving assay throughput, thus supporting using microfluidics for building next-generation embryoids and organoids for fundamental and translational research.


Asunto(s)
Microfluídica , Investigación Biomédica Traslacional , Animales , Organoides , Células Madre , Mamíferos
15.
Sci Rep ; 13(1): 18030, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865697

RESUMEN

Acoustic tweezing cytometry (ATC) is an ultrasound-based biophysical technique that has shown the capability to promote differentiation of human pluripotent stem cells (hPSCs). This study systematically examined how hPSCs respond to cyclic mechanical strains applied by ATC via displacement of integrin-bound microbubbles (averaged diameter of 4.3 µm) using ultrasound pulses (acoustic pressure 0.034 MPa, center frequency 1.24 MHz and pulse repetition frequency 1 Hz). Our data show downregulation of pluripotency marker Octamer-binding transcription factor 4 (OCT4) by at least 10% and increased nuclear localization of Yes-associated protein (YAP) by almost 100% in hPSCs immediately after ATC application for as short as 1 min and 5 min respectively. Analysis of the movements of integrin-anchored microbubbles under ATC stimulations reveals different stages of viscoelastic characteristic behavior and increasing deformation of the integrin-cytoskeleton (CSK) linkage. The peak displacement of integrin-bound microbubbles increased from 1.45 ± 0.16 to 4.74 ± 0.67 µm as the duty cycle of ultrasound pulses increased from 5% to 50% or the duration of each ultrasound pulse increased from 0.05 to 0.5 s. Real-time tracking of integrin-bound microbubbles during ATC application detects high correlation of microbubble displacements with OCT4 downregulation in hPSCs. Together, our data showing fast downregulation of OCT4 in hPSCs in respond to ATC stimulations highlight the unique mechanosensitivity of hPSCs to integrin-targeted cyclic force/strain dependent on the pulse duration or duty cycle of ultrasound pulses, providing insights into the mechanism of ATC-induced accelerated differentiation of hPSCs.


Asunto(s)
Integrinas , Células Madre Pluripotentes , Humanos , Integrinas/metabolismo , Acústica , Diferenciación Celular/fisiología , Citoesqueleto/metabolismo , Microburbujas
16.
Comput Biol Med ; 165: 107434, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696177

RESUMEN

Lung image registration can effectively describe the relative motion of lung tissues, thereby helping to solve series problems in clinical applications. Since the lungs are soft and fairly passive organs, they are influenced by respiration and heartbeat, resulting in discontinuity of lung motion and large deformation of anatomic features. This poses great challenges for accurate registration of lung image and its applications. The recent application of deep learning (DL) methods in the field of medical image registration has brought promising results. However, a versatile registration framework has not yet emerged due to diverse challenges of registration for different regions of interest (ROI). DL-based image registration methods used for other ROI cannot achieve satisfactory results in lungs. In addition, there are few review articles available on DL-based lung image registration. In this review, the development of conventional methods for lung image registration is briefly described and a more comprehensive survey of DL-based methods for lung image registration is illustrated. The DL-based methods are classified according to different supervision types, including fully-supervised, weakly-supervised and unsupervised. The contributions of researchers in addressing various challenges are described, as well as the limitations of these approaches. This review also presents a comprehensive statistical analysis of the cited papers in terms of evaluation metrics and loss functions. In addition, publicly available datasets for lung image registration are also summarized. Finally, the remaining challenges and potential trends in DL-based lung image registration are discussed.


Asunto(s)
Aprendizaje Profundo , Respiración , Benchmarking , Frecuencia Cardíaca , Pulmón/diagnóstico por imagen
17.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961125

RESUMEN

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated bio-chemical and -mechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Here we report a new human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on PSM cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the bio-chemical and -mechanical events that guide somite formation.

18.
Adv Biol (Weinh) ; 6(2): e2101151, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34939365

RESUMEN

Embryonic development is a fundamental physiological process that can provide tremendous insights into stem cell biology and regenerative medicine. In this process, cell fate decision is highly heterogeneous and dynamic, and investigations at the single-cell level can greatly facilitate the understanding of the molecular roadmap of embryonic development. Rapid advances in the technology of single-cell sequencing offer a perfectly useful tool to fulfill this purpose. Despite its great promise, single-cell sequencing is highly interdisciplinary, and successful applications in specific biological contexts require a general understanding of its diversity as well as the advantage versus limitations for each of its variants. Here, the technological principles of single-cell sequencing are consolidated and its applications in the study of embryonic development are summarized. First, the technology basics are presented and the available tools for each step including cell isolation, library construction, sequencing, and data analysis are discussed. Then, the works that employed single-cell sequencing are reviewed to investigate the specific processes of embryonic development, including preimplantation, peri-implantation, gastrulation, and organogenesis. Further, insights are provided on existing challenges and future research directions.


Asunto(s)
Desarrollo Embrionario/fisiología , Análisis de la Célula Individual , Diferenciación Celular , Implantación del Embrión , Desarrollo Embrionario/genética , Femenino , Humanos , Organogénesis , Embarazo
19.
Cell Stem Cell ; 29(9): 1402-1419.e8, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055194

RESUMEN

Despite its clinical and fundamental importance, our understanding of early human development remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of early development without using natural embryos can potentially help fill the knowledge gap of human development. Herein, transcriptome at the single-cell level of a human embryoid model was profiled at different time points. Molecular maps of lineage diversifications from the pluripotent human epiblast toward the amniotic ectoderm, primitive streak/mesoderm, and primordial germ cells were constructed and compared with in vivo primate data. The comparative transcriptome analyses reveal a critical role of NODAL signaling in human mesoderm and primordial germ cell specification, which is further functionally validated. Through comparative transcriptome analyses and validations with human blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells.


Asunto(s)
Estratos Germinativos , Análisis de la Célula Individual , Animales , Blastocisto , Linaje de la Célula , Ectodermo , Embrión de Mamíferos , Humanos
20.
Nano Today ; 412021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34745321

RESUMEN

Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA