Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
NMR Biomed ; 37(2): e5046, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37837254

RESUMEN

Temperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T1 , T2 , proton density, and diffusion). In the preclinical setting, temperature has a large influence on animal physiology (e.g., respiration rate, heart rate, metabolism, and oxidative stress) and needs to be carefully regulated, especially when the animal is under anesthesia and thermoregulation is disrupted. We present an open-source heating and cooling system capable of regulating the temperature of the animal. The system was designed using Peltier modules capable of heating or cooling a circulating water bath with active temperature feedback. Feedback was obtained using a commercial thermistor, placed in the animal rectum, and a proportional-integral-derivative controller was used to modulate the temperature. Its operation was demonstrated in a phantom as well as in mouse and rat animal models, where the standard deviation of the temperature of the animal upon convergence was less than a 10th of a degree. An application where brain temperature of a mouse was modulated was demonstrated using an invasive optical probe and noninvasive magnetic resonance spectroscopic thermometry measurements.


Asunto(s)
Calefacción , Termometría , Ratas , Ratones , Animales , Temperatura , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Temperatura Corporal , Termometría/métodos , Fantasmas de Imagen
2.
Bioelectromagnetics ; 45(3): 139-155, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37876116

RESUMEN

Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.


Asunto(s)
Imagen por Resonancia Magnética , Roedores , Humanos , Ratas , Ratones , Animales , Imagen por Resonancia Magnética/métodos , Encéfalo , Ondas de Radio/efectos adversos , Prótesis e Implantes/efectos adversos , Fantasmas de Imagen , Calor
3.
IEEE Open J Eng Med Biol ; 5: 50-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445243

RESUMEN

High-power microwave applications are growing for both military and civil purposes, yet they can induce brain-related risks and raise important public health concerns. High-power sub-millisecond radio frequency energy pulses have been demonstrated to be able to induce neurological and neuropathological changes in the brain while being compliant with current regulatory guidelines' limits, highlighting the necessity of revising them.

4.
Lab Anim (NY) ; 53(2): 33-42, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38279029

RESUMEN

Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats. We show ease of use and reproducibility of subject conditioning with anatomical T2-weighted imaging for both mice and rats. We also demonstrate the application of our design for awake functional MRI in mice using both visual evoked potential and olfactory stimulation paradigms. In addition, using a combined MRI, positron emission tomography and X-ray computed tomography experiment, we demonstrate that our proposed cradle design can be utilized for multiple imaging modalities.


Asunto(s)
Potenciales Evocados Visuales , Vigilia , Ratas , Ratones , Animales , Vigilia/fisiología , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones
5.
ArXiv ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37731658

RESUMEN

High-power microwave applications are growing for both military and civil purposes, yet they can induce brain-related risks and raise important public health concerns. High-power sub-millisecond radio frequency energy pulses have been demonstrated to be able to induce neurological and neuropathological changes in the brain while being compliant with current regulatory guidelines' limits, highlighting the necessity of revising them.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37649960

RESUMEN

With the development of novel technologies, radio frequency (RF) energy exposure is expanding at various wavelengths and power levels. These developments necessitate updated approaches of RF measurements in complex environments, particularly in live biological tissue. Accurate dosimetry of the absorbed RF electric fields (E-Fields) by the live tissue is the keystone of environmental health considerations for this type of ever-growing non-ionizing radiation energy. In this study, we introduce a technique for direct in-vivo measurement of electric fields in living tissue. Proof of principle in-vivo electric field measurements were conducted in rodent brains using Bismuth Silicon Oxide (BSO) crystals exposed to varying levels of RF energy. Electric field measurements were calibrated and verified using in-vivo temperature measurements using optical temperature fibers alongside electromagnetic field simulations of a transverse electromagnetic (TEM) cell.

7.
ArXiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205261

RESUMEN

Temperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T\textsubscript{1}, T\textsubscript{2}, proton density, diffusion and more). In the pre-clinical setting, temperature has a large influence on animal physiology (e.g., respiration rate, heart rate, metabolism, cellular stress, and more) and needs to be carefully regulated, especially when the animal is under anesthesia and thermoregulation is disrupted. We present an open-source heating and cooling system capable of stabilizing the temperature of the animal. The system was designed using Peltier modules capable of heating or cooling a circulating water bath with active temperature feedback. Feedback was obtained using a commercial thermistor, placed in the animal rectum, and a proportional{\text -}integral{\text -}derivative (PID) controller capable of locking the temperature. Operation was demonstrated in a phantom as well as mouse and rat animal models, where the standard deviation of the temperature of the animal upon convergence was less than a tenth of a degree. An application where brain temperature of a mouse was modulated was demonstrated using an invasive optical probe and non-invasive magnetic resonance spectroscopic thermometry measurements.

8.
Commun Eng ; 12022.
Artículo en Inglés | MEDLINE | ID: mdl-38125336

RESUMEN

As the use of Radio Frequency (RF) technologies increases, the impact of RF radiation on neurological function continues to receive attention. Whether RF radiation can modulate ongoing neuronal activity by non-thermal mechanisms has been debated for decades. However, the interactions between radiated energy and metal-based neural probes during experimentation could impact neural activity, making interpretation of the results difficult. To address this problem, we modified a miniature 1-photon Ca2+ imaging device to record interference-free neural activity and compared the results to those acquired using metal-containing silicon probes. We monitored the neuronal activity of awake rodent-brains under RF energy exposure (at 950 MHz) and in sham control paradigms. Spiking activity was reliably affected by RF energy in metal containing systems. However, we did not observe neuronal responses using metal-free optical recordings at induced local electric field strengths up to 230 V/m. Our results suggest that RF exposure higher than levels that are allowed by regulatory limits in real-life scenarios do not affect neuronal activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA