Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(15): 1496-1512, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38170178

RESUMEN

ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.


Asunto(s)
Linfoma Cutáneo de Células T , Síndrome de Sézary , Neoplasias Cutáneas , Infecciones Estafilocócicas , Humanos , Síndrome de Sézary/tratamiento farmacológico , Síndrome de Sézary/patología , Staphylococcus aureus , FN-kappa B , Linfocitos T , Enterotoxinas/farmacología , Linfoma Cutáneo de Células T/patología , Receptores de Antígenos de Linfocitos T , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Resistencia a Medicamentos
2.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38836332

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Asunto(s)
Nanotubos de Carbono , Triterpenos Pentacíclicos , Neumonía , Transducción de Señal , Triterpenos , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nanotubos de Carbono/toxicidad , FN-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacología , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/prevención & control , Neumonía/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología
3.
World J Surg ; 47(4): 1023-1030, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36581689

RESUMEN

BACKGROUND: T-tube drainage following laparoscopic common bile duct (CBD) exploration may lead to T-tube displacement and water-electrolyte disorders, affecting patients' quality of life. In particular, biliary peritonitis may develop in a small number of patients after T-tube removal, requiring reoperation. This prospective cohort study was performed to investigate the safety and feasibility of primary closure following laparoscopic CBD exploration for the treatment of choledocholithiasis. METHODS: Patients who were treated for choledocholithiasis by laparoscopic CBD exploration with primary closure from January 2019 to March 2022 comprised the PC group (n = 145). Patients who were treated for choledocholithiasis by laparoscopic CBD exploration with T-tube drainage during this period comprised the TD group (n = 153). Perioperative and follow-up outcomes were collected and statistically analyzed. RESULTS: The TD and PC groups showed significant differences in the operation time (124.6 ± 40.8 vs. 106 ± 36.4 min, P = 0.000) and postoperative hospital stay (7.1 ± 2.6 vs. 5.9 ± 2.0 days, P = 0.000). No significant difference was observed in terms of blood loss, the ratio of conversion to laparotomy, and postoperative parameters. Preoperative albumin and total bilirubin levels were the risk factors of bile leakage after surgery. No patients developed CBD stricture or carcinogenesis, The rates of residual and recurrent stones in the TD and PC groups were 1.97% vs. 1.40% and 1.31% vs. 1.40%, respectively, with no significant difference (P = 1.000 for both). CONCLUSIONS: Primary closure following laparoscopic CBD exploration is safe and feasible for selected patients with choledocholithiasis.


Asunto(s)
Coledocolitiasis , Laparoscopía , Humanos , Coledocolitiasis/cirugía , Conducto Colédoco/cirugía , Estudios de Factibilidad , Estudios Prospectivos , Calidad de Vida , Resultado del Tratamiento , Estudios Retrospectivos , Drenaje , Laparoscopía/efectos adversos , Tiempo de Internación , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía
4.
Regul Toxicol Pharmacol ; 140: 105381, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36963718

RESUMEN

In this study, the toxicity of ferric oxide nanoparticles (Fe2O3 NPs) administered through gavage to Sprague Dawley (SD) rats for 94 d, consecutively and the recovery after Fe2O3 NPs withdrawal for 30 d were evaluated. The vehicle control group, low-, medium-, and high-dose groups were administered with the vehicle (0.5% sodium carboxymethyl cellulose [CMC-Na]), 125, 250, and 500 mg/kg of Fe2O3 NPs, respectively, administered every morning for 94 d. There was no significant difference in the body weight, food intake, hematological, blood biochemical, and urine indices of SD rats in each administration group and the control group (P > 0.05). There was no significant difference in organ weight, organ indices, and the coefficient of the visceral brain between the SD rats in the different dosage groups and the SD rats in the vehicle control group (P > 0.05). Histopathological observations showed that there was no correlation between the pathological lesions of the organs observed in this study and the dose of Fe2O3 NPs (P > 0.05). The no-observed-adverse-effect level (NOAEL) dose of Fe2O3 NPs was initially determined to be 500 mg/kg administered to SD rats through oral gavage for 94 d, consecutively, followed by recovery after Fe2O3 NPs withdrawal for 30 d.


Asunto(s)
Nanopartículas , Ratas , Animales , Ratas Sprague-Dawley , Administración Oral , Relación Dosis-Respuesta a Droga , Nanopartículas/toxicidad , Tamaño de los Órganos , Pruebas de Toxicidad Subcrónica
5.
Ecotoxicol Environ Saf ; 252: 114623, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36774793

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) mainly induce oxidative stress through the overproduction of reactive oxygen species (ROS), which can lead to cytotoxicity. Celastrol, a plant-derived compound, can exert antioxidant effects by reducing ROS production. Our results indicated that exposure to MWCNTs decreased cell viability and increased ROS production. Nrf2 knockdown (kd) led to increased ROS production and enhanced MWCNT-induced cytotoxicity. Keap1-kd led to decreased ROS production and attenuated cytotoxicity. Treatment with celastrol significantly decreased ROS production and promoted Keap1 protein degradation through the lysosomal pathway, thereby enhancing the translocation of Nrf2 from the cytoplasm to the nucleus and increasing HO-1 expression. The in vivo results showed that celastrol could alleviate the inflammatory damage of lung tissues, increase the levels of the antioxidants, GSH and SOD, as well as promote the expression of the antioxidant protein, HO-1 in MWCNT-treated mice. Celastrol can alleviate MWCNT-induced oxidative stress through the Keap1/Nrf2/HO-1 signaling pathway.


Asunto(s)
Nanotubos de Carbono , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Nanotubos de Carbono/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Transducción de Señal
6.
Drug Chem Toxicol ; 46(6): 1083-1099, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36384384

RESUMEN

This study was designed to evaluate the subchronic toxicity of the compound of diphenhydramine hydrochloride (DH) and caffeine in Sprague-Dawley (SD) rats and beagle dogs. A total of 180 SD rats (15/sex/group) were randomly divided into the compound low-, medium- and high-dose groups (51, 102, 204 mg/kg), DH group (60 mg/kg), caffeine group (144 mg/kg) and the vehicle control group. Sixty beagle dogs (5/sex/group) were randomly divided into the compound low-, medium- and high-dose groups (male: 14.20, 28.30, 56.60 mg/kg, female: 5.66, 14.20, 28.30 mg/kg), DH group (male: 16.60 mg/kg, female: 8.30 mg/kg), caffeine group (male: 40.00 mg/kg, female: 20.00 mg/kg) and the vehicle control group. Rats and dogs were given continuous oral administration for 28 days following a 28-day recovery period. The adverse effects of the compound on rats and beagle dogs mainly included anorexia and liver function impairment. Most adverse effects induced by administration were reversible. Under the experimental conditions, the no-observed-adverse-effect level (NOAEL) of the compound of DH and caffeine was 51 mg/kg/day for SD rats and 28.30 mg/kg/day (male) and 5.66 mg/kg/day (female) for beagle dogs.


Asunto(s)
Cafeína , Difenhidramina , Ratas , Perros , Masculino , Animales , Femenino , Ratas Sprague-Dawley , Cafeína/toxicidad , Difenhidramina/toxicidad , Administración Oral , Nivel sin Efectos Adversos Observados
7.
J Vasc Res ; : 1-5, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33556943

RESUMEN

This study tested the hypothesis that endothelium-specific GTP cyclohydrolase I (GTPCH I) overexpression (Tg-GCH) restores age-associated endothelial dysfunction in vivo. Aortic GTPCH I expression and serum nitric oxide (NO) release were measured in young and aged mice. Aortic rings from young and aged wild-type (WT) mice and aged Tg-GCH mice were suspended for isometric tension recording. A hind limb ischemia model was used to measure blood flow recovery. Aged mice showed reduced GTPCH I expression in the aorta and decreased NO levels in serum. Compared with aged WT mice, Tg-GCH significantly elevated NO levels in serum in aged Tg-GCH mice, restored the impaired aortic relaxation in response to acetylcholine, and significantly elevated aortic constriction in response to L-NAME. Importantly, aged Tg-GCH mice displayed a significant increase in blood flow recovery compared with aged WT mice. GTPCH I reduction contributes to aging-associated endothelial dysfunction, which can be retarded by Tg-GCH.

8.
Plant J ; 99(5): 965-977, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31069858

RESUMEN

Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.


Asunto(s)
Aclimatación/fisiología , Poaceae/genética , Poaceae/fisiología , Selección Genética/fisiología , Zea mays/genética , Zea mays/fisiología , Frío , Genes de Plantas/genética , Antígenos HLA-G , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Estrés Fisiológico , Transcriptoma
9.
BMC Genomics ; 21(1): 428, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32586356

RESUMEN

BACKGROUND: The circadian clock drives endogenous 24-h rhythms that allow organisms to adapt and prepare for predictable and repeated changes in their environment throughout the day-night (diurnal) cycle. Many components of the circadian clock in Arabidopsis thaliana have been functionally characterized, but comparatively little is known about circadian clocks in grass species including major crops like maize and sorghum. RESULTS: Comparative research based on protein homology and diurnal gene expression patterns suggests the function of some predicted clock components in grasses is conserved with their Arabidopsis counterparts, while others have diverged in function. Our analysis of diurnal gene expression in three panicoid grasses sorghum, maize, and foxtail millet revealed conserved and divergent evolution of expression for core circadian clock genes and for the overall transcriptome. We find that several classes of core circadian clock genes in these grasses differ in copy number compared to Arabidopsis, but mostly exhibit conservation of both protein sequence and diurnal expression pattern with the notable exception of maize paralogous genes. We predict conserved cis-regulatory motifs shared between maize, sorghum, and foxtail millet through identification of diurnal co-expression clusters for a subset of 27,196 orthologous syntenic genes. In this analysis, a Cochran-Mantel-Haenszel based method to control for background variation identified significant enrichment for both expected and novel 6-8 nucleotide motifs in the promoter regions of genes with shared diurnal regulation predicted to function in common physiological activities. CONCLUSIONS: This study illustrates the divergence and conservation of circadian clocks and diurnal regulatory networks across syntenic orthologous genes in panacoid grass species. Further, conserved local regulatory sequences contribute to the architecture of these diurnal regulatory networks that produce conserved patterns of diurnal gene expression.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Poaceae/fisiología , Adaptación Fisiológica , Secuencias de Aminoácidos , Arabidopsis/genética , Secuencia Conservada , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química , Poaceae/genética , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Setaria (Planta)/genética , Setaria (Planta)/fisiología , Sorghum/genética , Sorghum/fisiología , Zea mays/genética , Zea mays/fisiología
10.
Plant Physiol ; 180(2): 926-936, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30918083

RESUMEN

The stigma is the entry point for sexual reproduction in plants, but the mechanisms underlying stigma development are largely unknown. Here, we disrupted putative auxin biosynthetic and signaling genes to evaluate their roles in rice (Oryza sativa) development. Disruption of the rice PINOID (OsPID) gene completely eliminated the development of stigmas, and overexpression of OsPID led to overproliferation of stigmas, suggesting that OsPID is a key determinant for stigma development. Interestingly, ospid mutants did not display defects in flower initiation, nor did they develop any pin-like inflorescences, a characteristic phenotype observed in pid mutants in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). We constructed double mutants of OsPID and its closest homolog, OsPIDb, yet the double mutants still did not develop any pin-like inflorescences, indicating that either ospid is compensated by additional homologous genes or OsPID has different functions in rice compared with PID in other organisms. We then knocked out one of the NAKED PINS IN YUC MUTANTS (NPY) genes, which cause the formation of pin-like inflorescences in Arabidopsis when compromised, in the ospid background. The ospid osnpy2 double mutants developed pin-like inflorescences, which were phenotypically similar to pid mutants in Arabidopsis and maize, demonstrating that the roles of OsPID in inflorescence development are likely masked by redundant partners. This work identified a key determinant for stigma development in rice and revealed a complex picture of the PID gene in rice development. Furthermore, the stigma-less ospid mutants are potentially useful in producing hybrid rice.


Asunto(s)
Flores/crecimiento & desarrollo , Organogénesis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Secuencia de Bases , Membrana Celular/metabolismo , Epistasis Genética , Proteínas Fluorescentes Verdes/metabolismo , Inflorescencia/metabolismo , Mutación/genética
11.
Plant J ; 93(5): 843-855, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29265526

RESUMEN

The domestication of diverse grain crops from wild grasses was a result of artificial selection for a suite of overlapping traits producing changes referred to in aggregate as 'domestication syndrome'. Parallel phenotypic change can be accomplished by either selection on orthologous genes or selection on non-orthologous genes with parallel phenotypic effects. To determine how often artificial selection for domestication traits in the grasses targeted orthologous genes, we employed resequencing data from wild and domesticated accessions of Zea (maize) and Sorghum (sorghum). Many 'classic' domestication genes identified through quantitative trait locus mapping in populations resulting from wild/domesticated crosses indeed show signatures of parallel selection in both maize and sorghum. However, the overall number of genes showing signatures of parallel selection in both species is not significantly different from that expected by chance. This suggests that while a small number of genes will extremely large phenotypic effects have been targeted repeatedly by artificial selection during domestication, the optimization part of domestication targeted small and largely non-overlapping subsets of all possible genes which could produce equivalent phenotypic alterations.


Asunto(s)
Genes de Plantas , Genética de Población , Selección Genética , Sorghum/genética , Zea mays/genética , Productos Agrícolas/genética , Domesticación , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Fenotipo
14.
Mol Genet Genomics ; 290(5): 1873-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25877516

RESUMEN

Ipomoea nil is widely used as an ornamental plant due to its abundance of flower color, but the limited transcriptome and genomic data hinder research on it. Using illumina platform, transcriptome profiling of I. nil was performed through high-throughput sequencing, which was proven to be a rapid and cost-effective means to characterize gene content. Our goal is to use the resulting information to facilitate the relevant research on flowering and flower color formation in I. nil. In total, 268 million unique illumina RNA-Seq reads were produced and used in the transcriptome assembly. These reads were assembled into 220,117 contigs, of which 137,307 contigs were annotated using the GO and KEGG database. Based on the result of functional annotations, a total of 89,781 contigs were assigned 455,335 GO term annotations. Meanwhile, 17,418 contigs were identified with pathway annotation and they were functionally assigned to 144 KEGG pathways. Our transcriptome revealed at least 55 contigs as probably flowering-related genes in I. nil, and we also identified 25 contigs that encode key enzymes in the phenylpropanoid biosynthesis pathway. Based on the analysis relating to gene expression profiles, in the phenylpropanoid biosynthesis pathway of I. nil, the repression of lignin biosynthesis might lead to the redirection of the metabolic flux into anthocyanin biosynthesis. This may be the most likely reason that I. nil has high anthocyanins content, especially in its flowers. Additionally, 15,537 simple sequence repeats (SSRs) were detected using the MISA software, and these SSRs will undoubtedly benefit future breeding work. Moreover, the information uncovered in this study will also serve as a valuable resource for understanding the flowering and flower color formation mechanisms in I. nil.


Asunto(s)
Genes de Plantas , Marcadores Genéticos , Ipomoea nil/genética , Análisis de Secuencia de ARN , Transcriptoma , Antocianinas/biosíntesis , Ipomoea nil/metabolismo
15.
Adv Sci (Weinh) ; 11(4): e2307029, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032117

RESUMEN

Albeit nanozymes-based tumor catalytic therapy (NCT) relies on endogenous chemical reactions that could achieve tumor microenvironment (TME)-specialized reactive oxygen species (ROS) production, the unsatisfactory catalytic activity of nanozymes accompanied by complex TME poses a barrier to the therapeutic effect of NCT. Herein, a one-step in situ synthesis strategy is reported to construct ternary Ru/TiO2- x @TiCN heterojunctions through oxidative conversion of TiCN nanosheets (NSs) to TiO2- x NSs and reductive deposition of Ru3+ to Ru nanoparticles. The narrow bandgap and existence of heterojunctions enhance the ultrasound-activated ROS generation of Ru/TiO2- x @TiCN because of the accelerated electron transfer and inhibits electron-hole pair recombination. The augmented ROS production efficiency is achieved by Ru/TiO2- x @TiCN with triple enzyme-like activities, which amplifies the ROS levels in a cascade manner through the catalytic decomposition of endogenous H2 O2 to relieve hypoxia and heterojunction-mediated NCT, as well as depletion of overexpressed glutathione. The satisfactory therapeutic effects of Ru/TiO2- x @TiCN heterojunctions are achieved through synergetic sonodynamic therapy and NCT, which achieve the complete elimination of tumors without recurrence. This strategy highlights the potential of in situ synthesis of semiconductor heterojunctions as enhanced sonosensitizers and nanozymes for efficient tumor therapy.


Asunto(s)
Electrones , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Transporte de Electrón , Catálisis , Neoplasias/terapia , Microambiente Tumoral
16.
J Mater Chem B ; 12(3): 710-719, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38164065

RESUMEN

The main challenges of nanozyme-based tumor catalytic therapy (NCT) lie in the unsatisfactory catalytic activity accompanied by a complex tumor microenvironment (TME). A few nanozymes have been designed to possess both enzyme-like catalytic activities and photothermal properties; however, the previously reported nanozymes mainly utilize the inefficient and unsafe NIR-I laser, which has a low maximum permissible exposure limit and a limited penetration depth. Herein, we report for the first time an all-in-one strategy to realize mild NIR-II photothermally amplified NCT by synthesizing amorphous CoSnO3 nanocubes with efficient triple enzyme-like catalytic activities and photothermal conversion properties. The presence of Co2+ and Sn4+ endows CoSnO3 nanocubes with the triple enzyme-like catalytic activities, not only achieving enhanced reactive oxygen species (ROS) generation through the Co2+-mediated peroxidase-like catalytic reaction to generate ˙OH and Sn4+-mediated depletion of overexpressed GSH, but also realizing the catalytic decomposition of endogenous H2O2 for relieving tumor hypoxia. More importantly, the obtained CoSnO3 nanocubes with a high photothermal conversion efficiency of 82.1% at 1064 nm could achieve mild hyperthermia (43 °C), which further improves the triple enzyme-like catalytic activities of the CoSnO3 nanozyme. The synergetic therapeutic efficacy of the NIR-II-responsive CoSnO3 nanozyme through mild NIR-II PTT-enhanced NCT could realize all-in-one multimodal tumor therapy to completely eliminate tumors without recurrence. This study will open a new avenue to explore NIR-II-photoresponsive nanozymes for efficient tumor therapy.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Terapia Combinada , Catálisis , Luz , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
17.
Adv Healthc Mater ; 13(2): e2302190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792422

RESUMEN

Although low-cost nanozymes with excellent stability have demonstrated the potential to be highly beneficial for nanocatalytic therapy (NCT), their unsatisfactory catalytic activity accompanied by intricate tumor microenvironment (TME) significantly hinders the therapeutic effect of NCT. Herein, for the first time, a heterojunction (HJ)-fabricated sonoresponsive and NIR-II-photoresponsive nanozyme is reported by assembling carbon dots (CDs) onto TiCN nanosheets. The narrow bandgap and mixed valences of Ti3+ and Ti4+ endow TiCN with the capability to generate reactive oxygen species (ROS) when exposed to ultrasound (US), as well as the dual enzyme-like activities of peroxidase and glutathione peroxidase. Moreover, the catalytic activities and sonodynamic properties of the TiCN nanosheets are boosted by the formation of HJs owing to the increased speed of carrier transfer and the enhanced electron-hole separation. More importantly, the introduction of CDs with excellent NIR-II photothermal properties could achieve mild hyperthermia (43 °C) and thereby further improve the NCT and sonodynamic therapy (SDT) performances of CD/TiCN. The synergetic therapeutic efficacy of CD/TiCN through mild hyperthermia-amplified NCT and SDT could realize "three-in-one" multimodal oncotherapy to completely eliminate tumors without recurrence. This study opens a new avenue for exploring sonoresponsive and NIR-II-photoresponsive nanozymes for efficient tumor therapy based on semiconductor HJs.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Carbono , Manejo del Dolor , Peroxidasa , Peroxidasas , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
18.
Hortic Res ; 11(2): uhae001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38419969

RESUMEN

The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.

19.
J Colloid Interface Sci ; 665: 681-692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552583

RESUMEN

The efficacy of electron-hole separation in a single sonosensitizer and the complexities of the tumor microenvironment (TME) present significant challenges to the effectiveness of sonodynamic therapy (SDT). Designing efficient sonosensitizers to enhance electron-hole separation and alleviate TME resistance is crucial yet challenging. Herein, we introduce a novel Z-scheme heterojunctions (HJs) sonosensitizer using Fe-doped carbon dots (CDs) as auxiliary semiconductors to sensitize cubic Cu2O (Fe-CDs@Cu2O) for the first time. Fe-CDs@Cu2O demonstrated enhanced SDT effects due to improved electron-hole separation. Additionally, the introduction of Fe ions in CDs synergistically enhances Fenton-like reactions with Cu ions in Cu2O, resulting in enhanced chemodynamic therapy (CDT) effects. Moreover, Fe-CDs@Cu2O exhibited rapid glutathione (GSH) depletion, effectively mitigating TME resistance. With high rates of 1O2 and OH generated by Fe-CDs@Cu2O, coupled with strong GSH depletion, single drug injection and ultrasound (US) irradiation effectively eliminate tumors. This innovative heterojunction sonosensitizer offers a promising pathway for clinical anti-tumor treatment.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Carbono/farmacología , Electrones , Glutatión , Iones , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Peróxido de Hidrógeno
20.
Microbiome Res Rep ; 3(2): 21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841414

RESUMEN

Aim: Non-salt Suancai is an acidic fermented vegetable consumed by the Chinese Yi ethnic group. Traditionally, it is produced by fermentation without salt in a cold environment. The present study aimed to investigate the metabolite and microbial characteristics, and the effects of substrates/suppliers ingredients on non-salt Suancai. Methods: A simulated fermentation system of non-salt Suancai was constructed by using different substrates/suppliers' ingredients. The coherence and differential detection of the metabolite and microbial characteristics were done through non-target metabolomic and metagenomic analysis. Results: Lactic acid was the predominant organic acid across all samples. The enumeration of the Lactic acid bacteria showed no discernible differences between study groups, but that of yeast was highest in the mustard leaf stem (Brassica juncea var. latipa). The three major biological metabolic pathways were metabolism, environmental information, and genetic information processing based on the KEGG database. The metabolite diversity varied with the substrate/supplier of ingredients based on the PLS-DA plot. Lactiplantibacillus, Leuconostoc, and Lactococcus were prevalent in all samples but differentially. The microbial diversity and richness varied significantly, with 36~291 species being identified. Among the various substrates collected from the same supplier, 29, 59, and 29 differential species were identified based on LEfSe [linear discriminant analysis (LDA) > 2, P < 0.05]. Leuconostoc citreum, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactiplantibacillus plantarum, and Leuconostoc lactis were likely to be used as the species to discriminate samples collected from different suppliers. Conclusions: This research contributed to the exploration of microbial and metabolite characteristics behind the ingredient restriction of non-salt Suancai using traditional technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA