Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Acc Chem Res ; 57(10): 1550-1563, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38723018

RESUMEN

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility. Compared with conventional inorganic cathode materials for Li ion batteries, OEMs possess some unique characteristics including flexible molecular structure, weak intermolecular interaction, being highly soluble in electrolytes, and moderate electrochemical potentials. These unique characteristics make OEMs suitable for applications in multivalent ion batteries, low-temperature batteries, redox flow batteries, and decoupled water electrolysis. Specifically, the flexible molecular structure and weak intermolecular interaction of OEMs make multivalent ions easily accessible to the redox sites of OEMs and facilitate the desolvation process on the redox site, thus improving the low-temperature performance, while the highly soluble nature enables OEMs as redox couples for aqueous redox flow batteries. Finally, the moderate electrochemical potential and reversible proton storage and release of OEMs make them suitable as redox mediators for water electrolysis. Over the past ten years, although various new OEMs have been developed for Li-organic batteries, Na-organic batteries, Zn-organic batteries, and other battery systems, batteries with OEMs still face many challenges, such as poor cycle stability, inferior energy density, and limited rate capability. Therefore, previous reviews of OEMs mainly focused on organic molecular design for organic batteries or strategies to improve the electrochemical performance of OEMs. A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking.In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion. Subsequently, we summarize the charge storage mechanisms of the different types of OEMs. Thereafter, we explore the characteristics of OEMs in comparison with conventional inorganic intercalation compounds including their structural flexibility, high solubility in the electrolyte, and appropriate electrochemical potential in order to establish the correlations between their characteristics and potential applications. Unlike previous reviews that mainly introduce the electrochemical performance progress of different organic batteries, this Account specifically focuses on some exceptional applications of OEMs corresponding to the characteristics of organic electrode materials in energy storage and conversion, as previously published by our groups. These applications include monovalent ion batteries, multivalent ion batteries, low-temperature batteries, redox flow batteries with soluble OEMs, and decoupled water electrolysis employing organic electrodes as redox mediators. We hope that this Account will make an invaluable contribution to the development of organic electrode materials for next-generation batteries and help to unlock a world of potential energy storage applications.

2.
Clin Infect Dis ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864601

RESUMEN

BACKGROUND: Nirmatrelvir-ritonavir is recommended for persons at risk for severe coronavirus disease 2019 (COVID-19) but remains underutilized. Information on which eligible groups are likely to benefit from treatment is needed. METHODS: We conducted a target trial emulation study in the Veterans Health Administration comparing nirmatrelvir-ritonavir treated versus matched untreated veterans at risk for severe COVID-19 who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from April 2022 through March 2023. We measured incidence of any hospitalization or all-cause mortality at 30 days. Outcomes were measured for the entire cohort, as well as among subgroups defined by 30-day risk of death or hospitalization, estimated using an ensemble risk prediction model. RESULTS: Participants were 87% male with median age 66 years and 16% unvaccinated. Compared with matched untreated participants, those treated with nirmatrelvir-ritonavir (n = 24 205) had a lower 30-day risk for hospitalization (1.80% vs 2.30%; risk difference [RD], -0.50% points [95% confidence interval {CI}: -.69 to -.35]) and death (0.11% vs 0.30%; RD, -0.20 [95% CI: -.24 to -.13]). The greatest reductions in combined hospitalization or death were observed in the highest risk quartile (RD -2.85 [95% CI: -3.94 to -1.76]), immunocompromised persons (RD -1.91 [95% CI: -3.09 to -.74]), and persons aged ≥75 years (RD -1.16 [95% CI: -1.73 to -.59]). No reductions were observed in the 2 lowest risk quartiles or persons younger than 65 years. CONCLUSIONS: Nirmatrelvir-ritonavir was effective in reducing 30-day hospitalization and death in older veterans, those at highest predicted risk for severe outcomes, and immunocompromised groups. Benefit was not observed in younger veterans or groups at lower predicted risk for hospitalization and death.

3.
Anal Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324019

RESUMEN

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

4.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877396

RESUMEN

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiología , Triticum/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Regulación de la Expresión Génica de las Plantas
5.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38291901

RESUMEN

PCOS is a complex and heterogeneous metabolic disorder that affects 6-20% of women of reproductive age. However, research on phosphorylation modification proteomics in PCOS remains lacking. PCOS can be divided into two groups based on the presence or absence of insulin resistance: PCOS with insulin resistance (PCOS-IR) and PCOS non-insulin resistant (PCOS-NIR). This study focused on the group without insulin resistance. Twenty-one PCOS-NIR and 39 control-NIR (Ctrl-NIR) patients were included in this study. All participants underwent ICSI or IVF-embryo transfer (IVF-ET) treatment in a reproductive center from July 2020 to November 2020. During oocyte retrieval, fresh follicular fluid was aspirated, collected, and sent to the laboratory for analysis of the granulosa cells. A 4D-label-free proteome quantification method was performed in this study; this was used to analyze protein enzymatic peptide fragments by liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis was performed on differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs). A total of 713 DEPs were identified between the two groups, including 293 upregulated and 420 downregulated DEPs in the PCOS-NIR group. There were 522 and 159 proteins with increased and decreased phosphorylation, respectively, in the PCOS-NIR group. After analyzing the different phosphorylation modification sites, 933 sites with upregulated and 211 sites with downregulated phosphorylation were found in the PCOS-NIR group. In this study, we describe the quantitative protein expression profiles and phosphorylation-modified protein expression profiles of ovarian granulosa cells from patients with PCOS-NIR, providing a new research perspective for these patients. Further studies are required to elucidate the role of protein phosphorylation in PCOS.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Proteómica , Biología Computacional , Células de la Granulosa
6.
Opt Express ; 32(1): 313-324, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175058

RESUMEN

Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization. For a linearly polarized input probe light, a rotation angle up to 86.4° has been realized with external control and pump laser powers of 10 mW and is mainly attributed to the optically-induced magnetization effect. Our demonstration offers a new approach to realize nonreciprocal devices, which can be applied to solid-state atom ensembles and may be useful in photonic integrated circuits.

7.
Reproduction ; 168(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38744310

RESUMEN

In brief: Abnormal glucose metabolism may be involved in the pathogenesis of endometriosis. The present study identifies that highly expressed H19 leads to increased aerobic glycolysis and histone lactylation levels in endometriosis. Abstract: Previous studies from our group and others have shown increased IncRNA H19 expression in both the eutopic endometrium and the ectopic endometriosis tissue during endometriosis. In this study, we use immunofluorescence, immunohistochemistry, and protein quantification to determine that levels of aerobic glycolysis and histone lactylation are increased in endometriosis tissues. In human endometrial stromal cells, we found that high H19 expression resulted in abnormal glucose metabolism by examining the levels of glucose, lactate, and ATP and measuring protein levels of enzymes that participate in glycolysis. At the same time, immunofluorescence and western blotting demonstrated increased histone lactylation in H19 overexpressing cells. Altering aerobic glycolysis and histone lactylation levels through the addition of sodium lactate and 2-deoxy-d-glucose demonstrated that increased aerobic glycolysis and histone lactylation levels resulted in enhanced cell proliferation and cell migration, contributing to endometriosis. To validate these findings in vivo, we constructed an endometriosis mouse model, demonstrating similar changes in endometriosis tissues in vivo. Both aerobic glycolysis and histone lactylation levels were elevated in endometriotic lesions. Taken together, these data demonstrate elevated expression levels of H19 in endometriosis patients promote abnormal glucose metabolism and elevated histone lactylation levels in vivo, enhancing cell proliferation and migration and promoting the progression of endometriosis. Our study provides a functional link between H19 expression and histone lactylation and glucose metabolism in endometriosis, providing new insights into disease mechanisms that could result in novel therapeutic approaches.


Asunto(s)
Endometriosis , Glucólisis , Histonas , ARN Largo no Codificante , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Humanos , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Histonas/metabolismo , Animales , Ratones , Proliferación Celular , Endometrio/metabolismo , Endometrio/patología , Adulto , Glucosa/metabolismo
8.
Cell Commun Signal ; 22(1): 98, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317235

RESUMEN

NRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS' PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS' palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.


Asunto(s)
Lipoilación , Transducción de Señal , Membrana Celular/metabolismo , Línea Celular , Mutación , Aparato de Golgi/metabolismo
9.
Int Microbiol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38740654

RESUMEN

INTRODUCTION: Sulfur-oxidizing bacteria (SOB) play a key role in the biogeochemical cycling of sulfur. OBJECTIVES: To explore SOB diversity, distribution, and physicochemical drivers in five volcanic lakes and two springs in the Wudalianchi volcanic field, China. METHODS: This study analyzed microbial communities in samples via high-throughput sequencing of the soxB gene. Physical-chemical parameters were measured, and QIIME 2 (v2019.4), R, Vsearch, MEGA7, and Mothur processed the data. Alpha diversity indices and UPGMA clustering assessed community differences, while heat maps visualized intra-sample variations. Canoco 5.0 analyzed community-environment correlations, and NMDS, Adonis, and PcoA explored sample dissimilarities and environmental factor correlations. SPSS v.18.0 tested for statistical significance. RESULTS: The diversity of SOB in surface water was higher than in springs (more than 7.27 times). We detected SOB affiliated to ß-proteobacteria (72.3 %), α-proteobacteria (22.8 %), and γ-proteobacteria (4.2 %) distributed widely in these lakes and springs. Rhodoferax and Cupriavidus were most frequent in all water samples, while Rhodoferax and Bradyrhizobium are dominant in surface waters but rare in springs. SOB genera in both habitats were positively correlated. Co-occurrence analysis identified Bradyrhizobium, Blastochloris, Methylibium, and Metyhlobacterium as potential keystone taxa. Redundancy analysis (RDA) revealed positive correlations between SOB diversity and total carbon (TC), Fe2+, and total nitrogen (TN) in all water samples. CONCLUSION: The diversity and community structure of SOB in volcanic lakes and springs in the Wudalianchi volcanic group were clarified. Moreover, the diversity and abundance of SOB decreased with the variation of water openness, from open lakes to semi-enclosed lakes and enclosed lakes.

10.
Physiol Plant ; 176(4): e14452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108068

RESUMEN

Salinity is considered one of the abiotic stresses that have the greatest impact on soybean production worldwide. Lanthanum (La) is a rare earth element that can reduce adverse conditions on plant growth and productivity. However, the regulatory mechanism of La-mediated plant response to salt stress has been poorly studied, particularly in soybeans. Therefore, our study investigated the mechanisms of La-mediated salt stress alleviation from the perspectives of the antioxidant system, subcellular structure, and metabolomics responses. The results indicated that salt stress altered plant morphology and biomass, resulting in an increase in peroxidation, inhibition of photosynthesis, and damage to leaf structure. Exogenous La application effectively promoted the activity of superoxide dismutase (SOD) and peroxidase (POD), as well as the soluble protein content, while decreasing the Na+ content and Na+/K+ ratio in roots and leaves, and reducing oxidative damage. Moreover, transmission electron microscopy (TEM) demonstrated that La prevented the disintegration of chloroplasts. Fourier-transform infrared spectroscopy (FTIR) analysis further confirmed that La addition mitigated the decline in protein, carbohydrates, and pectin levels in the leaves. Lanthanum decreased the leaf flavonoid content and synthesis by inhibiting the content of key substances in the phenylalanine metabolism pathway during NaCl exposure. Collectively, our research indicates that La reduces cell damage by regulating the antioxidant system and secondary metabolite synthesis, which are important mechanisms for the adaptive response of soybean leaves, thereby improving the salt tolerance of soybeans.


Asunto(s)
Glycine max , Lantano , Hojas de la Planta , Estrés Salino , Lantano/farmacología , Glycine max/efectos de los fármacos , Glycine max/fisiología , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Proteínas de Plantas/metabolismo
11.
Physiol Plant ; 176(4): e14460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091116

RESUMEN

Soil salinization is a major abiotic factor threatening rapeseed yields and quality worldwide, yet the adaptive mechanisms underlying salt resistance in rapeseed are not clear. Therefore, this study aimed to explore the differences in growth potential, sodium (Na+) retention in different plant tissues, and transport patterns between salt-tolerant (HY9) and salt-sensitive (XY15) rapeseed genotypes, which cultivated in Hoagland's nutrient solution in either the with or without of 150 mM NaCl stress. The results showed that the inhibition of growth-related parameters of the XY15 genotype was higher than those of the HY9 in response to salt stress. The XY15 had lower photosynthesis, chloroplast disintegration, and pigment content but higher oxidative damage than the HY9. Under NaCl treatment, the proline content in the root of HY9 variety increased by 8.47-fold, surpassing XY15 (5.41-fold). Under salt stress, the HY9 maintained lower Na+ content, while higher K+ content and exhibited a relatively abundant K+/Na+ ratio in root and leaf. HY9 also had lower Na+ absorption, Na+ concentration in xylem sap, and Na+ transfer factor than XY15. Moreover, more Na+ contents were accumulated in the root cell wall of HY9 with higher pectin content and pectin methylesterase (PME) activity than XY15. Collectively, our results showed that salt-tolerant varieties absorbed lower Na+ and retained more Na+ in the root cell wall (carboxyl group in pectin) to avoid leaf salt toxicity and induced higher proline accumulation as a defense and antioxidant system, resulting in higher resistance to salt stress, which provides the theoretical basis for screening salt resistant cultivars.


Asunto(s)
Brassica napus , Genotipo , Prolina , Estrés Salino , Tolerancia a la Sal , Sodio , Prolina/metabolismo , Brassica napus/genética , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Brassica napus/fisiología , Sodio/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Cloruro de Sodio/farmacología , Fotosíntesis/efectos de los fármacos , Potasio/metabolismo
12.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104697

RESUMEN

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Animales , Astacoidea , Quitosano/farmacología , Dieta , Suplementos Dietéticos/análisis , Superóxido Dismutasa/metabolismo , Oligosacáridos/farmacología , Inmunidad Innata , Alimentación Animal/análisis
13.
Clin Exp Pharmacol Physiol ; 51(10): e13914, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39139001

RESUMEN

The pleiotropic effect of cancer-associated fibroblasts (CAFs) on tumour progression depends on the environment. circFARP1 is critical for CAFs-induced gemcitabine (GEM) resistance in pancreatic cancer. Its specific role and mechanism in non-small cell lung cancer (NSCLC) have not been reported yet. We prepared a cancer-associated fibroblasts-conditioned medium (CAF-CM) to incubate the A549 cells. Quantitative real-time polymerase chain reaction was used to detect RNA levels. We detected protein expression by immunohistochemistry, immunocytochemistry, western blot and immunofluorescence. We also detected the targeting impact between circFARP1, miR-338-3p and SRY-box transcription factor 4 (SOX4) by using dual-luciferase reporter and RNA pull-down assays. We determined cell proliferation, migration and invasion capabilities through Cell Counting Kit-8 and transwell assays. In addition, we measured tumour volume and weight in vivo by establishing a xenograft tumour model. CircFARP1 levels were remarkably high in the CAFs. The transfection experiments found that circFARP1 downregulation in CAFs caused migration, proliferation and invasion inhibition of CAFs and A549 cells, whereas inhibiting miR-38-3p or overexpressing SOX4 in CAFs could significantly reverse the inhibition. In vivo study in nude mice confirmed that CAFs could promote NSCLC tumour growth and knockdown of circFARP1 could inhibit tumour growth of NSCLC, whereas miR-38-3p downregulation or SOX4 overexpression could significantly reverse the inhibition. circFARP1 promotes NSCLC development by stimulating miR-338-3p/SOX4 signalling axis to regulate CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Invasividad Neoplásica , ARN Circular , Factores de Transcripción SOXC , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animales , ARN Circular/genética , ARN Circular/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Proliferación Celular/genética , Ratones , Células A549 , Metástasis de la Neoplasia , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Masculino
14.
Skin Res Technol ; 30(5): e13701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682785

RESUMEN

BACKGROUND: Dermatomyositis (DM) is a rare inflammatory disease. Our research focuses on predicting poor prognosis in DM patients and evaluating the prognostic significance of ferritin and Salivary Sugar Chain Antigen-6 (KL-6) through multivariate logistic regression analysis. METHODS: Between February 2018 and April 2020, 80 DM patients at our hospital were categorized into MDA5 positive (n = 20) and negative (n = 60) groups. We conducted multivariate logistic regression to determine DM's poor prognosis risk factors and evaluate ferritin/KL-6's predictive value for prognosis. RESULTS: Analysis showed no gender, age, body mass index (BMI), or lifestyle (smoking, drinking) differences, nor in dyspnea, muscle weakness, skin ulcers, and acetylcysteine treatment effects (p > 0.05). Significant differences emerged in arrhythmias, interstitial pneumonia, C-reactive protein, albumin, and lactate dehydrogenase levels (p < 0.05). Before treatment, differences were negligible (p > 0.05), but post-treatment, serum KL-6 and ferritin levels dropped. MDA5 positive patients had elevated serum KL-6 and ferritin levels than survivors (p < 0.05), with a strong correlation to DM. Combined diagnosis using serum KL-6 and ferritin for DM prognosis showed area under curves of 0.716 and 0.634, significantly outperforming single-index diagnoses with an area under curve (AUC) of 0.926 (p < 0.05). CONCLUSION: Serum KL-6 and ferritin show marked abnormalities in DM, useful as indicators for evaluating polymyositis and DM conditions. However, the study's small sample size is a drawback. Expanding the sample size is essential to monitor serum KL-6 and ferritin changes in DM patients under treatment more closely, aiming to improve clinical assessment and facilitate detailed research.


Asunto(s)
Dermatomiositis , Ferritinas , Mucina-1 , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Dermatomiositis/sangre , Dermatomiositis/diagnóstico , Ferritinas/sangre , Helicasa Inducida por Interferón IFIH1 , Modelos Logísticos , Mucina-1/sangre , Análisis Multivariante , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo
15.
J Ultrasound Med ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177413

RESUMEN

Spondyloarthritis (SpA) is a prevalent genetic disorder that significantly impairs mobility, particularly in the spine, sacroiliac, and peripheral joints. Recent evidence highlights early involvement of the sternoclavicular joint in SpA, which may serve as an initial indicator. Diagnosis often relies on CT and MRI, neglecting ultrasound's potential in identifying SpA-related sternoclavicular arthritis. This review focuses on the joint's anatomy, exploring ultrasound's diagnostic and therapeutic role in SpA-related sternoclavicular arthritis, aiming to provide insights for future ultrasound applications in SpA management.

16.
Ren Fail ; 46(1): 2307959, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38289005

RESUMEN

BACKGROUND: Sepsis-associated acute kidney injury (S-AKI) is a critical illness and is often associated with high morbidity and mortality rates. The soluble urokinase-type plasminogen activator receptor (suPAR) is an important immune mediator and is involved in kidney injury. However, its diagnostic value in S-AKI patients remains unclear. Therefore, we assessed the early predictive value of suPAR for S-AKI patients. METHODS: We prospectively enrolled adult patients, immediately after fulfilling the sepsis-3 criteria. Plasma suPAR levels at 0-, 12-, 24-, and 48-h post-sepsis diagnosis were measured. S-AKI development was the primary outcome. S-AKI risk factors were analyzed using logistic regression, and the value of plasma suPAR for early S-AKI diagnosis was assessed using receiver operating characteristic (ROC) curves. RESULTS: Of 179 sepsis patients, 63 (35.2%) developed AKI during hospitalization. At 12-, 24-, and 48-h post-sepsis diagnosis, plasma suPAR levels were significantly higher in patients with S-AKI than in patients without S-AKI (p < 0.05). The plasma suPAR had the highest area under the ROC curve of 0.700 (95% confidence interval (CI), 0.621-0.779) at 24-h post-sepsis diagnosis, at which the best discrimination ability for S-AKI was achieved with suPAR of ≥6.31 ng/mL (sensitivity 61.9% and specificity 71.6%). Logistic regression analysis showed that suPAR at 24-h post-sepsis diagnosis remained an independent S-AKI risk factor after adjusting for mechanical ventilation, blood urea nitrogen, and pH. CONCLUSIONS: The findings suggest that plasma suPAR may be a potential biomarker for early S-AKI diagnosis.


Asunto(s)
Lesión Renal Aguda , Sepsis , Adulto , Humanos , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Sepsis/complicaciones , Sepsis/diagnóstico , Biomarcadores , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Enfermedad Crítica , Curva ROC , Pronóstico
17.
Surg Innov ; 31(2): 173-177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38182546

RESUMEN

PURPOSE: Numerous modifications laparoscopic techniques have mushroomed in recent years. Here we describe a modified technique of extracorporeal ligation of processus vaginalis in children using a hernia crochet needle with a cannula. METHODS: Processus vaginalis repair was carried out on patients diagnosed with inguinal hernia or hydroceles using this novel technique between June 2021 and June 2022. The processus vaginalis was closed extracorporeally using a hernia crochet needle with a cannula. In the presence of patent processus vaginalis, the same procedure would be performed on the contralateral side. The primary outcomes was the safety and efficiency of this modified procedure, and the secondary outcomes was the post operative complications. RESULTS: A total of 212 (165 inguinal hernia and 47 hydroceles) children were corrected by this novel technique. The mean operation time was 27.49 min for unilateral inguinal hernia cases and 36.55 min for bilateral cases. The unilateral hydrocele median operation time was 27.83 min and that for the bilateral cases was 37.30 min. During the mean of 10.92 months of follow-up, there was only a boy subject to a metachronous contralateral occurrence of hernia 10 months after surgery, and no other complications (knot reactions, testicular atrophy, postoperative hydrocele or iatrogenic) have been observed yet. CONCLUSION: This study shown a unique procedure with using a hernia crochet needle with a cannula to be simple, safe, and effective in managing inguinal hernias and hydroceles in the pediatric population.


Asunto(s)
Hernia Inguinal , Laparoscopía , Hidrocele Testicular , Masculino , Niño , Humanos , Lactante , Hernia Inguinal/cirugía , Cánula , Resultado del Tratamiento , Herniorrafia/efectos adversos , Herniorrafia/métodos , Laparoscopía/efectos adversos , Laparoscopía/métodos , Hidrocele Testicular/cirugía , Estudios Retrospectivos
18.
Water Sci Technol ; 89(4): 945-961, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38423610

RESUMEN

The occurrence and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in different types of urban road runoff in Beijing during two typical rainfall events were studied. The average concentration of PAHs in road runoff particulate was in the order of Guanyuanqiao Road (ring road, 15,175 ng/L) > Huayuanqiao Road (primary road, 4,792 ng/L) > Dongcheng Alley (alley, 4,774 ng/L) > Nansihuan Viaduct (viaduct, 770 ng/L), much higher than dissolved PAHs. The total concentration of ∑16PAHs decreased with runoff scouring. Rainfall conditions and the accumulation of PAHs in the early rainfall period show a significant impact on PAHs pollution. The event mean concentration range of PAHs is 674-21,596 ng/L, following in the order of ring road > primary road > alley > viaduct. The proportion of four-ring PAHs was the highest. The first flush effect of PAHs is found in both rainfall events, and the effect of different ring PAHs is relatively similar. The content of PAHs is positively correlated with the amount of total organic carbon and suspended substance in runoff (r2> 0.72). The ecological risk assessment indicated that PAHs in road runoff except viaduct road corresponded to high risk.


Asunto(s)
Polvo , Hidrocarburos Policíclicos Aromáticos , Beijing , Contaminación Ambiental , Medición de Riesgo , Monitoreo del Ambiente
19.
J Environ Sci (China) ; 138: 418-427, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135407

RESUMEN

Bi2O2CO3(BOC)/Bi4O5Br2(BOB)/reduced graphene oxide (rGO) Z-scheme heterojunction with promising photocatalytic properties was synthesized via a facile one-pot room-temperature method. Ultra-thin nanosheets of BOC and BOB were grown in situ on rGO. The formed 2D/2D direct Z-scheme heterojunction of BOC/BOB with oxygen vacancies (OVs) effectively leads to lower negative electron reduction potential of BOB as well as higher positive hole oxidation potential of BOC, showing improved reduction/oxidation ability. Particularly, rGO is an acceptor of the electrons from the conduction band of BOC. Its dual roles significantly improve the transfer performance of photo-induced charge carriers and accelerate their separation. With layered nanosheet structure, rich OVs, high specific surface area, and increased utilization efficiency of visible light, the multiple synergistic effects of BOC/BOB/rGO can achieve effective generation and separation of the electron-holes, thereby generating more •O2- and h+. The photocatalytic reduction efficiency of CO2 to CO (12.91 µmol/(g·hr)) is three times higher than that of BOC (4.18 µmol/(g·hr)). Moreover, it also achieved almost 100% removal of Rhodamine B and cyanobacterial cells within 2 hours.


Asunto(s)
Electrones , Grafito , Temperatura , Oxígeno
20.
Front Public Health ; 12: 1385592, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721532

RESUMEN

Background: Widowhood is one of the most serious issues affecting the mental health of older persons. China currently has tens of millions of widowed older adult, which is a huge group. It is of great significance to study the impacts of widowhood on their mental health and put forward some measures for improvement. Method: We used China Family Panel Studies (CFPS) data in 2020, which included 4,184 older adults. Linear regression is used to examine the relationship among widowhood, mental health, and social capital. Results: Both short-term and medium- and long-term widowhood lead to a significant increase in depression, which seriously affects the mental health of older people. At the same time, community-level and family-level social capital have significant buffering effects on the loss of mental health caused by widowhood, but this effect is heterogeneous, with different types of social capital playing different roles among different gender groups. Conclusion: The provision of care support by children and good neighborhood relationships can help mitigate the psychological impact of widowhood, and these are areas where social policy can make a difference.


Asunto(s)
Salud Mental , Capital Social , Viudez , Humanos , Viudez/psicología , Viudez/estadística & datos numéricos , Femenino , Masculino , Anciano , Salud Mental/estadística & datos numéricos , China , Persona de Mediana Edad , Depresión/psicología , Anciano de 80 o más Años , Apoyo Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA