Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531315

RESUMEN

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina Tiolesterasa
2.
Nature ; 568(7752): 410-414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918400

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Pinocitosis , Sindecano-1/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
3.
J Am Chem Soc ; 146(1): 609-616, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153960

RESUMEN

Two unprecedented tetratriacontanuclear and tetraicosanuclear gold(I) sulfido clusters (denoted as Au34-LMe and Au24-LCbz) with different temperature-induced stimulus-responsive behavior and emission property have been constructed by taking advantage of the judiciously designed bidentate phosphine ligand. Au34-LMe represents the highest nuclearity of the gold(I) sulfido cluster with more than a thousand atoms in the molecule. Octagonal macrocycles based on metal-cluster nodes have been assembled for the first time. The self-assembly and temperature-induced stimulus-responsive processes were monitored by 1H and 31P{1H} NMR spectroscopy, and the identities of the discrete gold(I) complexes were established by single-crystal structural analysis and high-resolution electrospray ionization mass spectrometry data. The steric effects exerted by the substituents on the V-shaped 1,3-bis(diphenylphosphino)benzene ligand have been shown to govern the self-assembly from the 1D cluster and 3D cage to 2D macrocycles. This work not only offers a new strategy to construct and regulate the structure of 2D macrocyclic gold(I) sulfido complexes but also lays the foundation for the future precise design and controlled construction of higher polygonal and cluster-node macrocycles.

4.
Mol Med ; 30(1): 27, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378457

RESUMEN

BACKGROUND: Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. METHODS: In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. RESULTS: ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. CONCLUSION: Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis.


Asunto(s)
Resorción Ósea , Luteolina , Osteoporosis , Femenino , Ratas , Animales , Resorción Ósea/patología , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas , Farmacología en Red , Diferenciación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteoporosis/tratamiento farmacológico , Factores de Transcripción NFATC/metabolismo
5.
Anal Chem ; 96(25): 10467-10475, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38863336

RESUMEN

"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.


Asunto(s)
Aleaciones , Peroxidasa , Platino (Metal) , Platino (Metal)/química , Aleaciones/química , Peroxidasa/química , Peroxidasa/metabolismo , Bencidinas/química , Límite de Detección , Oxidación-Reducción , Polímeros/química , Humanos , Catálisis , Técnicas Biosensibles/métodos , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Indoles
6.
Chembiochem ; 25(3): e202300481, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009768

RESUMEN

Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.


Asunto(s)
Péptidos , Proteínas , Distribución Tisular , Proteínas/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
7.
Nat Mater ; 22(3): 322-328, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36781951

RESUMEN

Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic-inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials.

8.
Hepatology ; 77(1): 124-143, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429173

RESUMEN

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratones , Quinasas Quinasa Quinasa PAM/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Proteínas de Motivos Tripartitos/metabolismo
9.
Inflamm Res ; 73(4): 597-617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353723

RESUMEN

OBJECTIVE: PANoptosis, a new form of regulated cell death, concomitantly manifests hallmarks for pyroptosis, apoptosis, and necroptosis. It has been usually observed in macrophages, a class of widely distributed innate immune cells in various tissues, upon pathogenic infections. The second-generation curaxin, CBL0137, can trigger necroptosis and apoptosis in cancer-associated fibroblasts. This study aimed to explore whether CBL0137 induces PANoptosis in macrophages in vitro and in mouse tissues in vivo. METHODS: Bone marrow-derived macrophages and J774A.1 cells were treated with CBL0137 or its combination with LPS for indicated time periods. Cell death was assayed by propidium iodide staining and immunoblotting. Immunofluorescence microscopy was used to detect cellular protein distribution. Mice were administered with CBL0137 plus LPS and their serum and tissues were collected for biochemical and histopathological analyses, respectively. RESULTS: The results showed that CBL0137 alone or in combination with LPS induced time- and dose-dependent cell death in macrophages, which was inhibited by a combination of multiple forms of cell death inhibitors but not each alone. This cell death was independent of NLRP3 expression. CBL0137 or CBL0137 + LPS-induced cell death was characterized by simultaneously increased hallmarks for pyroptosis, apoptosis and necroptosis, indicating that this is PANoptosis. Induction of PANoptosis was associated with Z-DNA formation in the nucleus and likely assembly of PANoptosome. ZBP1 was critical in mediating CBL0137 + LPS-induced cell death likely by sensing Z-DNA. Moreover, intraperitoneal administration of CBL0137 plus LPS induced systemic inflammatory responses and caused multi-organ (including the liver, kidney and lung) injury in mice due to induction of PANoptosis in these organs. CONCLUSIONS: CBL0137 alone or plus inflammatory stimulation induces PANoptosis both in vitro and in vivo, which is associated with systemic inflammatory responses in mice.


Asunto(s)
Carbazoles , ADN de Forma Z , Neoplasias , Ratones , Animales , Lipopolisacáridos/farmacología , Apoptosis , Piroptosis
10.
Org Biomol Chem ; 22(4): 805-810, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38170477

RESUMEN

A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.

11.
J Biochem Mol Toxicol ; 38(6): e23746, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769694

RESUMEN

To identify the role of enterotoxin-related genes in colorectal cancer (CRC) development and progression. Upregulated differentially expressed genes shared by three out of five Gene Expression Omnibus (GEO) data sets were included to screen the key enterotoxin-induced oncogenes (EIOGs) according to criteria oncogene definition, enrichment, and protein-protein interaction (PPI) network analysis, followed by prognosis survival, immune infiltration, and protential drugs analyses was performed via integration of RNA-sequencing data and The Cancer Genome Atlas-derived clinical profiles. We screened nine common key EIOGs from at least three GEO data sets. A Cox proportional hazards regression models verified that more alive cases, decreased overall survival, and highest 4-year survival prediction in CRC patients with high-risk score. Protein tyrosine phosphatase receptor type F polypeptide-interacting protein alpha-4 (PPFIA4), STY11, SCN3B, and SPTBN5 were shared in the same PPI network. Immune infiltration results showed that SCN3B and synaptotagmin 11 expression were obviously associated with B cell, macrophage, myeloid dendritic cell, neutrophils, and T cell CD4+ and CD8+ in both colon adenocarcinoma and rectal adenocarcinoma. CHIR-99021, MLN4924, and YK4-279 were identified as the potential drugs for treatment. Finally, upregulated EIOGs genes PPFIA4 and SCN3B were found in colon adenocarcinoma and PPFIA4 and SCN3B were proved to promote cell proliferation and migration in vitro. We demonstrated here that EIOGs promoting a malignancy phenotype was related with poor survival and prognosis in CRC, which might be served as novel therapeutic targets in CRC management.


Asunto(s)
Neoplasias Colorrectales , Enterotoxinas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas
12.
Environ Res ; 254: 119152, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754612

RESUMEN

Several soil functions of alpine wetland depend on microbial communities, including carbon storage and nutrient cycling, and soil microbes are highly sensitive to hydrological conditions. Wetland degradation is often accompanied by a decline in water table. With the water table drawdown, the effects of microbial network complexity on various soil functions remain insufficiently understood. In this research, we quantified soil multifunctionality of flooded and non-flooded sites in the Lalu Wetland on the Tibetan Plateau. We employed high-throughput sequencing to investigate the microbial community responses to water table depth changes, as well as the relationships between microbial network properties and soil multifunctionality. Our findings revealed a substantial reduction in soil multifunctionality at both surface and subsurface soil layers (0-20 cm and 20-40 cm) in non-flooded sites compared to flooded sites. The α-diversity of bacteria in the surface soil of non-flooded sites was significantly lower than that in flooded sites. Microbial network properties (including the number of nodes, number of edges, average degree, density, and modularity of co-occurrence networks) exhibited significant correlations with soil multifunctionality. This study underscores the adverse impact of non-flooded conditions resulting from water table drawdown on soil multifunctionality in alpine wetland soils, driven by alterations in microbial community structure. Additionally, we identified soil pH and moisture content as pivotal abiotic factors influencing soil multifunctionality, with microbial network complexity emerging as a valuable predictor of multifunctionality.


Asunto(s)
Microbiología del Suelo , Humedales , Microbiota , Suelo/química , Tibet , Agua Subterránea/microbiología , Agua Subterránea/química , Bacterias , Inundaciones
13.
Med Sci Monit ; 30: e943523, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824386

RESUMEN

BACKGROUND Hepatocellular carcinoma (HCC) poses a significant threat to human life and is the most prevalent form of liver cancer. The intricate interplay between apoptosis, a common form of programmed cell death, and its role in immune regulation stands as a crucial mechanism influencing tumor metastasis. MATERIAL AND METHODS Utilizing HCC samples from the TCGA database and 61 anoikis-related genes (ARGs) sourced from GeneCards, we analyzed the relationship between ARGs and immune cell infiltration in HCC. Subsequently, we identified long non-coding RNAs (lncRNAs) associated with ARGs, using the least absolute shrinkage and selection operator (LASSO) regression analysis to construct a robust prognostic model. The predictive capabilities of the model were then validated through examination in a single-cell dataset. RESULTS Our constructed prognostic model, derived from lncRNAs linked to ARGs, comprised 11 significant lncRNAs: NRAV, MCM3AP-AS1, OTUD6B-AS1, AC026356.1, AC009133.1, DDX11-AS1, AC108463.2, MIR4435-2HG, WARS2-AS1, LINC01094, and HCG18. The risk score assigned to HCC samples demonstrated associations with immune indicators and the infiltration of immune cells. Further, we identified Annexin A5 (ANXA5) as the pivotal gene among ARGs, with it exerting a prominent role in regulating the lncRNA gene signature. Our validation in a single-cell database elucidated the involvement of ANXA5 in immune cell infiltration, specifically in the regulation of mononuclear cells. CONCLUSIONS This study delves into the intricate correlation between ARGs and immune cell infiltration in HCC, culminating in the development of a novel prognostic model reliant on 11 ARGs-associated lncRNAs. Furthermore, our findings highlight ANXA5 as a promising target for immune regulation in HCC, offering new perspectives for immune therapy in the context of HCC.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Anoicis/genética , Apoptosis/genética , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Bases de Datos Genéticas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Pronóstico , ARN Largo no Codificante/genética
14.
BMC Urol ; 24(1): 70, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532342

RESUMEN

BACKGROUND: Ureteropelvic junction obstruction (UPJO) is a common obstructive disease of the urinary tract. UPJO patients commonly exhibit coexistent renal calculi. The main aim of therapy is to relieve the obstruction and remove the stones at the same time. METHODS: This retrospective study included 110 patients diagnosed with UPJO coexisting with multiple renal calculi at Shanxi Bethune Hospital and the First Hospital of Shanxi Medical University between March 2016 and January 2022. Patients were divided according to the methods used for dealing with UPJO and renal calculi. In Group A, patients underwent traditional open pyeloplasty and pyelolithotomy. In Group B, patients underwent percutaneous nephrolithotomy first and then laparoscopic pyeloplasty. In Group C, patients underwent flexible cystoscopy to remove stones and then laparoscopic pyeloplasty. In Group D, patients underwent flexible vacuum-assisted ureteral access sheath (FV-UAS)assisted flexible ureteroscopy (f-URS) and underwent laparoscopic pyeloplasty. The stones were broken up using a holmium laser. The pyeloplasty success rate, stone clearance rate, operation time, bleeding amount, complication occurrence rate, postsurgical pain, length of stay, and hospitalization cost were compared between the groups. The follow-up period was at least 2 years. RESULTS: The use of f-URS and the FV-UAS, significantly increased the renal stone clearance rate and significantly reduced the complication incidence and operation time in UPJO patients with multiple coexisting renal calculi. CONCLUSIONS: Laparoscopic pyeloplasty combined with f-URS and FV-UAS is safe and effective for treating UPJO in patients complicated by renal caliceal stones. TRIAL REGISTRATION: Retrospectively registered.


Asunto(s)
Cálculos Renales , Laparoscopía , Cálculos Ureterales , Obstrucción Ureteral , Humanos , Ureteroscopía/efectos adversos , Estudios Retrospectivos , Pelvis Renal/cirugía , Laparoscopía/métodos , Obstrucción Ureteral/cirugía , Cálculos Renales/cirugía , Resultado del Tratamiento , Cálculos Ureterales/cirugía
15.
Nucleic Acids Res ; 50(10): 5757-5771, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35639925

RESUMEN

Synechococcus elongatus, formerly known as Anacystis nidulans, is a representative species of cyanobacteria. It is also a model organism for the study of photoreactivation, which can be fully photoreactivated even after receiving high UV doses. However, for a long time, only one photolyase was found in S. elongatus that is only able to photorepair UV induced cyclobutane pyrimidine dimers (CPDs) in DNA. Here, we characterize another photolyase in S. elongatus, which belongs to iron-sulfur bacterial cryptochromes and photolyases (FeS-BCP), a subtype of prokaryotic 6-4 photolyases. This photolyase was named SePhrB that could efficiently photorepair 6-4 photoproducts in DNA. Chemical analyses revealed that SePhrB contains a catalytic FAD cofactor and an iron-sulfur cluster. All of previously reported FeS-BCPs contain 6,7-dimethyl-8-ribityllumazine (DMRL) as their antenna chromophores. Here, we first demonstrated that SePhrB possesses 7,8-didemethyl-8-hydroxy-5-deazariboflavin (8-HDF) as an antenna chromophore. Nevertheless, SePhrB could be photoreduced without external electron donors. After being photoreduced, the reduced FAD cofactor in SePhrB was extremely stable against air oxidation. These results suggest that FeS-BCPs are more diverse than expected which deserve further investigation.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , ADN/química , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Hierro , Dímeros de Pirimidina/química , Azufre , Synechococcus , Rayos Ultravioleta
16.
Chem Biodivers ; 21(5): e202302111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38453650

RESUMEN

Phytochemical studies on 95 % ethanol extract of the heartwood of Solanum verbascifolium L. resulted in the isolation of one new amide derivative (1), and 21 known phenylpropanoids compounds. The structures were characterized by spectral analysis and high-resolution mass spectrometric analysis. The anti-inflammatory activity of amide compounds 1-4 and 6-9 by investigating their impact on the release of nitric oxide (NO) in MH-S cells. Our findings unveiled significant inhibitory effects on NO secretion. Compound 1 exhibited robust dose-dependent suppression, with pronounced inhibition observed at both 20 µM (P<0.01) and 40 µM (P<0.01). Furthermore, compound 9 demonstrated noteworthy inhibitory effects at 40 µM (P<0.01). Similarly, compounds 3 and 4 displayed substantial inhibition of NO secretion at the same concentration, although the significance level was slightly lower (P<0.05). It is expected that there is a substantial association between the anti-inflammatory activities of amides and their targets, specifically PTGS2, by combining network pharmacology and molecular docking techniques. This discovery emphasizes amides' potential as an interesting subject for additional study in the realm of anti-inflammatory medications.


Asunto(s)
Antiinflamatorios , Simulación del Acoplamiento Molecular , Óxido Nítrico , Solanum , Solanum/química , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Ciclooxigenasa 2/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Farmacología en Red , Amidas/química , Amidas/farmacología , Amidas/aislamiento & purificación , Ratones , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Línea Celular , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación
17.
J Cell Mol Med ; 27(5): 701-713, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786127

RESUMEN

Metastasis-associated protein 1 (MTA1), belonging to metastasis-associated proteins (MTA) family, which are integral parts of nucleosome remodelling and histone deacetylation (NuRD) complexes. However, the effect of MTA1 on osteoclastogenesis is unknown. Currently, the regulation of MTA1 in osteoclastogenesis was reported for the first time. MTA1 knockout cells (KO) were established by CRISPR/Cas9 genome editing. RAW264.7 cells with WT and KO group were stimulated independently by RANKL to differentiate into mature osteoclasts. Further, western blotting and quantitative qRT-PCR were used to explore the effect of MTA1 on the expression of osteoclast-associated genes (including CTSK, MMP9, c-Fos and NFATc1) during osteoclastogenesis. Moreover, the effects of MTA1 on the expression of reactive oxygen species (ROS) in osteoclastogenesis was determined by 2', 7' -dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Nuclear translocation of Nrf2 was assessed by immunofluorescence staining and western blotting. Our results indicated that the MTA1 deletion group could differentiate into osteoclasts with larger volume and more TRAP positive. In addition, compared with WT group, KO group cells generated more actin rings. Mechanistically, the loss of MTA1 increased the expression of osteoclast-specific markers, including c-Fos, NFATc1, CTSK and MMP-9. Furthermore, the results of qRT-PCR and western blotting showed that MTA1 deficiency reduced basal Nrf2 expression and inhibited Nrf2-mediated expression of related antioxidant enzymes. Immunofluorescence staining demonstrated that MTA1 deficiency inhibited Nrf2 nuclear translocation. Taken together, the above increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclast formation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteogénesis , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sistemas CRISPR-Cas , Osteoclastos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7 , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo
18.
J Am Chem Soc ; 145(13): 7454-7461, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943768

RESUMEN

Stimuli-responsive structural transformation has attracted much attention for its potential to mimic the behavior of biological transformations and functions. Here, two unprecedented dodecanuclear and pentadecanuclear gold(I) sulfido clusters (denoted trans-Au12 and trans-Au15, respectively) with impressive stimuli-responsive interconversion have been obtained by taking advantage of the judiciously designed tridentate phosphine ligand Ltrans as the building block. Both UV light and temperature can be applied to trigger the structural conversions between trans-Au12 and trans-Au15. In addition, NMR, high-resolution electrospray ionization mass spectrometry, and UV-vis absorption spectroscopy have been employed to monitor the transformation process and decipher the mechanism of structural conversion. This work not only provides a paradigm to investigate photo-induced cluster-to-cluster transformation based on polydentate phosphine ligands but also offers a new direction for the construction of the stimuli-responsive materials.

19.
Mol Carcinog ; 62(6): 855-865, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946578

RESUMEN

Long noncoding RNAs (lncRNAs) are critically involved in the occurrence and development of breast cancer (BC). In this study, we performed RNA sequencing, and the results revealed an increase in the expression level of novel lncRNA ENST00000370438 in tissues of patients with BC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results showed an increase in lncRNA ENST00000370438 expression level in 23 pairs of BC tissues. Next, we determined the effect of ENST00000370438 on BC cell proliferation, and the results showed that ENST00000370438 promotes cell proliferation in BC. The proteomic analysis showed a decrease in DHCR24 expression level in BC cells transfected with ENST00000370438 small interfering RNA. Western blot and qRT-PCR assay results showed that ENST00000370438 regulated DHCR24 expression. Furthermore, the rescue experiment showed that the interference with ENST00000370438 expression could restore the effect of DHCR24 overexpression on BC cell proliferation, demonstrating that ENST00000370438 could promote cell proliferation by upregulating DHCR24. Finally, we showed that lncRNA ENST000000370438 could promote tumor growth by overexpressing DHCR24 in nude mice. Our results demonstrated that lncRNA ENST00000370438 promotes BC cell proliferation by upregulating DHCR24 expression.


Asunto(s)
MicroARNs , Neoplasias , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , ARN Largo no Codificante , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , MicroARNs/genética , Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Proteómica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
20.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33517370

RESUMEN

Aging is the largest risk factor of major human diseases. Long noncoding RNAs (lncRNAs) as the key regulatory elements have shown a strong impact on multiple biological processes as well as human disease mechanisms. However, the roles of lncRNAs in aging/healthy aging processes remain largely unknown. Centenarians are good models for healthy aging studies due to avoiding major chronic diseases and disabilities. To illustrate their ubiquitous nature in the genome and the 'secrets' of healthy aging regulation from the perspective of lncRNAs, peripheral blood samples from two regions consisting 76 centenarians (CENs), 54 centenarian-children (F1) and 41 spouses of centenarian-children (F1SP) were collected for deep RNA-seq. We identified 11 CEN-specific lncRNAs that is particularly expressed in longevous individuals. By kmers clustering, hundreds of human lncRNAs show similarities with CEN-specific lncRNAs, especially with ENST00000521663 and ENST00000444998. Using F1SP as normal elder controls (age: 59.9 ± 6.6 years), eight lncRNAs that are differentially expressed in longevous elders (CEN group, age: 102.2 ± 2.4 years) were identified as candidate aging/health aging-related lncRNAs (car-lncs). We found that the expression of eight car-lncs in human diploid fibroblasts displayed dynamic changes during cell passage and/or H2O2/rapamycin treatment; of which, overexpression either of THBS1-IT1 and THBS1-AS1, two lncRNAs that highly expressed in CENs, can remarkably decrease p16, p21 and the activity of senescent related ß-galactosidase, suggesting that THBS1-IT1 and THBS1-AS1 can inhibit cellular senescence. We provided the first comprehensive analysis of lncRNA expression in longevous populations, and our results hinted that dysregulated lncRNAs in CENs are potential protective factors in healthy aging process.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Regulación de la Expresión Génica , ARN Largo no Codificante/biosíntesis , Transcriptoma , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA