Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Immunol ; 23(9): 1330-1341, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35999392

RESUMEN

Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications.


Asunto(s)
Artritis Reumatoide , Fibroblastos , Proteína Proto-Oncogénica c-ets-1 , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Metaloproteinasas de la Matriz/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Ligando RANK/genética , Factores de Transcripción/metabolismo
2.
Nature ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169177

RESUMEN

The periosteum is the layer of cells that covers nearly the entire surface of every bone. Upon infection, injury or malignancy the bone surface undergoes new growth-the periosteal reaction-but the mechanism and physiological role of this process remain unknown1,2. Here we show that the periosteal reaction protects against cancer invasion into the bone. Histological analyses of human lesions of head and neck squamous cell carcinomas (HNSCCs) show that periosteal thickening occurs in proximity to the tumour. We developed a genetically dissectible mouse model of HNSCC and demonstrate that inducible depletion of periosteal cells accelerates cancerous invasion of the bone. Single-cell RNA sequencing reveals that expression of the gene encoding the protease inhibitor TIMP1 is markedly increased in the periosteum at the pre-invasive stage. This increase is due to upregulation of HIF1α expression in the tumour microenvironment, and increased TIMP1 inactivates matrix-degrading proteases, promoting periosteal thickening to inhibit cancer invasion. Genetic deletion of Timp1 impairs periosteal expansion, exacerbating bone invasion and decreasing survival in tumour-bearing mice. Together, these data show that the periosteal reaction may act as a functional stromal barrier against tumour progression, representing a unique example of tissue immunity mediated by stromal cells.

3.
Small ; 19(33): e2301463, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086108

RESUMEN

Violet phosphorus (VP), a newly emerging elemental 2D semiconductor, with attractive properties such as tunable bandgap, high carrier mobility, and unusual structural anisotropy, offers significant opportunities for designing high-performance electronic and optoelectronic devices. However, the study on fundamental property and device application of 2D VP is seriously hindered by its inherent instability in ambient air. Here, a VP/MoS2 van der Waals heterostructure is constructed by vertically staking few-layer VP and MoS2 , aiming to utilize the synergistic effect of the two materials to achieve a high-performance 2D photodetector. The strong optical absorption of VP combining with the type-II band alignment of VP/MoS2 heterostructure make VP play a prominent photogating effect. As a result, the VP/MoS2 heterostructure photodetector achieves an excellent photoresponse performances with ultrahigh responsivity of 3.82 × 105  A W-1 , high specific detectivity of 9.17 × 1013 Jones, large external quantum efficiency of 8.91 × 107 %, and gate tunability, which are much superior to that of individual MoS2 device or VP device. Moreover, the VP/MoS2 heterostructure photodetector indicates superior air stability due to the effective protection of VP by MoS2 encapsulation. This work sheds light on the future study of the fundamental property and optoelectronic device application of VP.

4.
Analyst ; 148(5): 1075-1084, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36723170

RESUMEN

A highly sensitive label-free chemical sensing platform for the detection of various metal ions is demonstrated. The chemical sensor was derived from a single-mode fiber that is inserted into the ceramic tube with epoxy resin (ER) on the end face for reflecting light and forms the Fabry-Perot (F-P) interferometric cavity. Multilayer chitosan (CS)/polyacrylic acid (PAA) were coated on the surface of the epoxy resin and act as the sensitive film. Based on the analysis of the sensing principle and the F-P cavity structure, the parameters were numerically simulated and experimentally evaluated, which enables ease of fabrication and real-time modulation of the cavity length. The sensitivity of sensing Ni2+, Zn2+, and Na+ reached 9.95 × 10-4 nm ppb-1, 2.31 × 10-4 nm ppb-1, and 4 × 10-4 nm ppb-1, respectively, and the sensing results were theoretically analyzed by the Langmuir adsorption model, which corresponds to the surface atom percentage results obtained by SEM and EDS measurements for sensing three types of metal ions. The proposed ER/CS/PAA multilayer film-coated F-P sensor can be employed as a probe, which features label-free, highly sensitivity, real-time monitoring, ease of measurement, stability, and therefore provides a remarkable analytical platform for chemical applications.

5.
J Immunol ; 198(11): 4268-4276, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28438897

RESUMEN

Systemic lupus erythematosus (SLE) damages multiple organs by producing various autoantibodies. In this study, we report that decreased microRNA (miR)-200a-3p causes IL-2 hypoproduction through zinc finger E-box binding homeobox (ZEB)1 and C-terminal binding protein 2 (CtBP2) in a lupus-prone mouse. First, we performed RNA sequencing to identify candidate microRNAs and mRNAs involved in the pathogenesis of SLE. We found that miR-200a-3p was significantly downregulated, whereas its putative targets, ZEB2 and CtBP2, were upregulated in CD4+ T cells from MRL/lpr-Tnfrsf6lpr mice compared with C57BL/6J mice. ZEB1 and ZEB2 comprise the ZEB family and suppress various genes, including IL-2 by recruiting CtBP2. IL-2 plays a critical role in immune tolerance, and insufficient IL-2 production upon stimulation has been recognized in SLE pathogenesis. Therefore, we hypothesized that decreased miR-200a-3p causes IL-2 deficit through the ZEB1-CtBP2 and/or ZEB2-CtBP2 complex in SLE CD4+ T cells. Overexpression of miR-200a-3p induced IL-2 production by downregulating ZEB1, ZEB2, and CtBP2 in EL4 cell lines. We further revealed that miR-200a-3p promotes IL-2 expression by reducing the binding of suppressive ZEB1-CtBP2 and ZEB2-CtBP2 complexes on negative regulatory element A in the IL-2 promoter in EL4 cells. Interestingly, the ZEB1-CtBP2 complex on negative regulatory element A was significantly upregulated after PMA/ionomycin stimulation in lupus CD4+ T cells. Our studies have revealed a new epigenetic pathway in the control of IL-2 production in SLE whereby low levels of miR-200a-3p accumulate the binding of the ZEB1-CtBP2 complex to the IL-2 promoter and suppress IL-2 production.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Interleucina-2/biosíntesis , Interleucina-2/genética , Lupus Eritematoso Sistémico/inmunología , MicroARNs/genética , Fosfoproteínas/genética , Linfocitos T/inmunología , Oxidorreductasas de Alcohol , Animales , Línea Celular , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Interleucina-2/inmunología , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Fosfoproteínas/metabolismo , Linfocitos T/patología , Activación Transcripcional , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
6.
Mod Rheumatol ; 27(5): 773-777, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27846761

RESUMEN

OBJECTIVES: To determine prognostic factors of methotrexate-associated lymphoproliferative disorder (MTX-LPD) and evaluate the efficacy and safety of biological therapy in rheumatoid arthritis (RA) complicated with MTX-LPD. METHODS: Thirty RA patients who developed MTX-LPD were investigated in this study. We compared the clinical and laboratory parameters of patients who achieved regression of LPD by MTX withdrawal with those who required chemotherapy and evaluated the clinical course of RA after LPD development. RESULTS: Twenty-three patients (76.7%) achieved regression of LPD by MTX withdrawal. Chemotherapy-free patients had a tendency of shorter RA duration (13.1 vs. 22.0 years, p = 0.108) and higher doses of MTX at LPD diagnosis (8.0 vs. 5.3 mg/w, p = 0.067) than patients who required chemotherapy. A significantly higher positive rate of peripheral blood Epstein-Barr virus (EBV)-DNA was observed in the chemotherapy-free group (9/9 vs. 0/3, p = 0.0002). Of 15 patients that received biological agents after LPD development, 14 patients (93.3%) demonstrated an improved disease activity of RA and persistent remission of LPD, whereas only one patient experienced relapse of LPD during tocilizumab therapy. CONCLUSIONS: Peripheral blood EBV-DNA positivity is a potential prognostic marker of better outcome in MTX-LPD. Biological agents could be an option for the treatment of RA patients with MTX-LPD.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Metotrexato/efectos adversos , Adulto , Anciano , Antirreumáticos/administración & dosificación , Antirreumáticos/efectos adversos , Factores Biológicos/uso terapéutico , ADN Viral/análisis , Femenino , Herpesvirus Humano 4/fisiología , Humanos , Japón , Trastornos Linfoproliferativos/inducido químicamente , Trastornos Linfoproliferativos/diagnóstico , Masculino , Metotrexato/administración & dosificación , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Pronóstico , Privación de Tratamiento
8.
ACS Nano ; 18(17): 11462-11473, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632853

RESUMEN

Two-dimensional (2D) materials with superior properties exhibit tremendous potential in developing next-generation electronic and optoelectronic devices. Integrating various functions into one device is highly expected as that endows 2D materials great promise for more Moore and more-than-Moore device applications. Here, we construct a WSe2/Ta2NiSe5 heterostructure by stacking the p-type WSe2 and the n-type narrow gap Ta2NiSe5 with the aim to achieve a multifunction optoelectronic device. Owing to the large interface potential barrier, the heterostructure device reveals a prominent diode feature with a large rectify ratio (7.6 × 104) and a low dark current (10-12 A). Especially, gate voltage- and bias voltage-tunable staggered-gap to broken-gap transition is achieved on the heterostructure device, which enables gate voltage-tunable forward and reverse rectifying features. As results, the heterostructure device exhibits superior self-powered photodetection properties, including a high detectivity of 1.08 × 1010 Jones and a fast response time of 91 µs. Additionally, the intrinsic structural anisotropy of Ta2NiSe5 endows the heterostructure device with strong polarization-sensitive photodetection and high-resolution polarization imaging. Based on these characteristics, a multimode optoelectronic logic gate is realized on the heterostructure via synergistically modulating the light on/off, polarization angle, gate voltage, and bias voltage. This work shed light on the future development of constructing high-performance multifunctional optoelectronic devices.

9.
Int J Oral Sci ; 16(1): 18, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413562

RESUMEN

The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune-bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNA-sequencing analysis on mouse periodontal lesions and showed that neutrophil-osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Ratones , Animales , Neutrófilos/metabolismo , Neutrófilos/patología , Citocinas , Pérdida de Hueso Alveolar/microbiología , Osteogénesis , Ligando RANK
10.
Anal Chim Acta ; 1252: 341051, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-36935139

RESUMEN

A reflective fiber-optic Fabry-Perot cavity probe sensor is proposed to selectively measure cholesterol concentration by insert single mode fiber into ceramic tube and immobilize epoxy resin (ER)/graphene oxide (GO)/beta-cyclodextrin (ß-CD) multi-layer film onto end face of ceramic tube. EDC/NHS activated GO is selected to form chemical binding with ß-CD, and ß-CD is the sensitive materials to bind with cholesterol molecules. With multi-layer film assisted, the sensitivity of sensor to cholesterol concentration can reach 3.92 nm/mM and the limit of detection reaches 3.48 µ M. In addition, 4 mM hemoglobin, glucose and ascorbic acid are doped into a set cholesterol sample and verified the highly selectivity of sensing cholesterol. Furthermore, the reproducibility was proved by measure the spectrum of four sensors with same fabrication process, and the reusability was also proved by repeated measurements. Overall, the sensor features with high mechanical strength, ease of fabrication, real-time monitoring, low cost and ease for measurement that given by probe structure. Therefore, the sensor provides a remarkable analytical platform for biosensing applications.

11.
Bone Res ; 11(1): 43, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563119

RESUMEN

The bony skeleton is continuously renewed throughout adult life by the bone remodeling process, in which old or damaged bone is removed by osteoclasts via largely unknown mechanisms. Osteocytes regulate bone remodeling by producing the osteoclast differentiation factor RANKL (encoded by the TNFSF11 gene). However, the precise mechanisms underlying RANKL expression in osteocytes are still elusive. Here, we explored the epigenomic landscape of osteocytic cells and identified a hitherto-undescribed osteocytic cell-specific intronic enhancer in the TNFSF11 gene locus. Bioinformatics analyses showed that transcription factors involved in cell death and senescence act on this intronic enhancer region. Single-cell transcriptomic data analysis demonstrated that cell death signaling increased RANKL expression in osteocytic cells. Genetic deletion of the intronic enhancer led to a high-bone-mass phenotype with decreased levels of RANKL in osteocytic cells and osteoclastogenesis in the adult stage, while RANKL expression was not affected in osteoblasts or lymphocytes. These data suggest that osteocytes may utilize a specialized regulatory element to facilitate osteoclast formation at the bone surface to be resorbed by linking signals from cellular senescence/death and RANKL expression.

12.
J Clin Invest ; 131(6)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720039

RESUMEN

In rheumatoid arthritis (RA), osteoclastic bone resorption causes structural joint damage as well as periarticular and systemic bone loss. Periarticular bone loss is one of the earliest indices of RA, often preceding the onset of clinical symptoms via largely unknown mechanisms. Excessive osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL) expressed by synovial fibroblasts causes joint erosion, whereas the role of RANKL expressed by lymphocytes in various types of bone damage has yet to be elucidated. In the bone marrow of arthritic mice, we found an increase in the number of RANKL-expressing plasma cells, which displayed an ability to induce osteoclastogenesis in vitro. Genetic ablation of RANKL in B-lineage cells resulted in amelioration of periarticular bone loss, but not of articular erosion or systemic bone loss, in autoimmune arthritis. We also show conclusive evidence for the critical contribution of synovial fibroblast RANKL to joint erosion in collagen-induced arthritis on the arthritogenic DBA/1J background. This study highlights the importance of plasma-cell RANKL in periarticular bone loss in arthritis and provides mechanistic insight into the early manifestation of bone lesion induced by autoimmunity.


Asunto(s)
Artritis Experimental/inmunología , Osteogénesis/inmunología , Células Plasmáticas/inmunología , Animales , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos B/inmunología , Linfocitos B/patología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Resorción Ósea/inmunología , Resorción Ósea/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Células Plasmáticas/patología , Ligando RANK/deficiencia , Ligando RANK/genética , Ligando RANK/inmunología , Membrana Sinovial/inmunología , Membrana Sinovial/patología
13.
Biosci Trends ; 14(5): 342-348, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-32908076

RESUMEN

The human immune system has evolved to recognize and eradicate pathogens, a process that is known as "host defense". If, however, the immune system does not work properly, it can mistakenly attack the body's own tissues and induce autoimmune diseases. Rheumatoid arthritis (RA) is such an autoimmune disease in which the synovial joints are predominately attacked by the immune system. Moreover, RA is associated with bone destruction and joint deformity. Although biologic agents have propelled RA treatment forward dramatically over the past 30 years, a considerable number of patients with RA still experience progressive bone damage and joint disability. That is to be expected since current RA therapies are all intended to halt inflammation but not to alleviate bone destruction. A better understanding of bone erosions is crucial to developing a novel strategy to treat RA-associated erosions. This review provides insights into RA-associated bone destruction and perspectives for future clinical interventions.


Asunto(s)
Artritis Reumatoide/complicaciones , Factores Biológicos/farmacología , Conservadores de la Densidad Ósea/farmacología , Osteoporosis/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Factores Biológicos/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Cadherinas/farmacología , Cadherinas/uso terapéutico , Humanos , Cápsula Articular/efectos de los fármacos , Cápsula Articular/inmunología , Cápsula Articular/patología , Osteoblastos/efectos de los fármacos , Osteoblastos/inmunología , Osteoclastos/efectos de los fármacos , Osteoclastos/inmunología , Osteogénesis/efectos de los fármacos , Osteogénesis/inmunología , Osteoporosis/tratamiento farmacológico , Osteoporosis/patología , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Ligando RANK/antagonistas & inhibidores , Ligando RANK/inmunología , Ligando RANK/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Líquido Sinovial/efectos de los fármacos , Líquido Sinovial/inmunología
14.
Stem Cells Int ; 2017: 9198328, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28751919

RESUMEN

The aim of this study was to evaluate the efficacy of human synovial membrane-derived MSCs (SM-MSCs) in murine collagen-induced arthritis (CIA). Male mice (age 7-9 weeks) were injected intra-articularly with SM-MSCs obtained from patients with osteoarthritis, on days 28, 32, and 38 after bovine type II collagen immunization. The efficacy of SM-MSCs in CIA was evaluated clinically and histologically. Cytokine profile analyses were performed by real-time polymerase chain reaction and multiplex analyses. Splenic helper T (Th) cell and regulatory B cell subsets were analyzed by flow cytometry. Intra-articular SM-MSC injection ameliorated the clinical and histological severity of arthritis. Decrease in tumor necrosis factor-α, interferon-γ, and interleukin- (IL-) 17A and increase in IL-10 production were observed after SM-MSC treatment. Flow cytometry showed that Th1 and Th17 cells decreased, whereas Th2, regulatory T (Treg), and PD-1+CXCR5+FoxP3+ follicular Treg cells increased in the spleens of SM-MSC-treated mice. Regulatory B cell analysis showed that CD21hiCD23hi transitional 2 cells, CD23lowCD21hi marginal zone cells, and CD19+CD5+CD1d+IL-10+ regulatory B cells increased following SM-MSC treatment. Our results demonstrated that SM-MSCs injected in inflamed joints in CIA had a therapeutic effect and could prevent arthritis development and suppress immune responses via immunoregulatory cell expansion.

15.
Exp Ther Med ; 14(2): 1633-1639, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28810629

RESUMEN

Rheumatoid arthritis (RA) is one of the most frequently occurring autoimmne diseases, with symptoms including synovium hyperplasia, immune disorder, cartilage damage and bone resorption. It has previously been demonstrated that microRNA-34a (miR-34a) may participate in cell apoptosis, immune activation and bone metabolism, therefore the present study investigated the effects of miR-34a on RA. Collagen-induced arthritic (CIA) mice were employed as a murine model of experimental arthritis, and it was demonstrated that the level of miR-34a in the spleens, lymph nodes and synovium was increased in the CIA mice compared with normal DBA/1j mice. Administration of miR-34a antagomir, the chemically modified inhibitor, ameliorated CIA and delayed the onset of symptoms. Arthritis scores decreased and joint swelling was alleviated with the miR-34a antagomir treatment and the expression of inflammatory cytokines was decreased. miR-34a antagomir delivery significantly decreased the percentage of T cells present including T helper (Th) 1, Th2, Th17 and regulatory T cells. Furthermore miR-34a antagomir-treated CIA mice demonstrated decreased inflammatory-induced bone loss. Overall, it was observed that inhibition of miR-34a ameliorated murine arthritis, downregulated T cell percentage and cytokine expression, and suppressed bone loss. The experimental results suggest that inhibition of miR-34a may offer a novel alternative for the treatment of RA.

16.
Intern Med ; 56(13): 1645-1650, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674351

RESUMEN

Objective To assess the safety of azathioprine (AZA) in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Methods We retrospectively enrolled 67 consecutive AAV patients who had initiated AZA treatment from January 2006 to August 2014 at Okayama University Hospital. We evaluated the development of severe adverse events (AEs), AZA discontinuation due to total AEs (severe AEs included) within 1 year, and AZA-associated risk factors. Results The patients' median age was 70 years old. Forty-nine women and 18 men participated at the initiation of the study. Fifty-eight (87%) patients experienced AEs, and 36 experienced severe AEs (21 hepatic and 11 cytopenic severe AEs). Thirty-one (46%) patients discontinued treatment because of AEs. Abnormal hepatic laboratory test results at the treatment initiation were more frequent in patients with hepatic severe AEs and were associated with treatment discontinuation. The leukocyte and neutrophil counts at the treatment initiation were lower in the patients who discontinued treatment because of cytopenic AEs than in those who continued treatment. Only two patients experienced flare-ups during treatment. Conclusion The AE-associated AZA discontinuation rate in Japanese AAV patients was relatively high. AZA use warrants caution in patients with abnormal hepatic laboratory test results or low leukocyte or neutrophil counts.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Azatioprina/efectos adversos , Anciano , Pueblo Asiatico , Azatioprina/uso terapéutico , Femenino , Enfermedad Granulomatosa Crónica/metabolismo , Humanos , Japón , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , NADPH Oxidasas/deficiencia , NADPH Oxidasas/metabolismo , Estudios Retrospectivos , Rituximab/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA