RESUMEN
Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.
Asunto(s)
Macrófagos , Retina , Animales , Ratones , Retina/lesiones , Retina/metabolismo , Microglía , Sistema Nervioso Central , MonocitosRESUMEN
High-acuity vision in primates, including humans, is mediated by a small central retinal region called the fovea. As more accessible organisms lack a fovea, its specialized function and its dysfunction in ocular diseases remain poorly understood. We used 165,000 single-cell RNA-seq profiles to generate comprehensive cellular taxonomies of macaque fovea and peripheral retina. More than 80% of >60 cell types match between the two regions but exhibit substantial differences in proportions and gene expression, some of which we relate to functional differences. Comparison of macaque retinal types with those of mice reveals that interneuron types are tightly conserved. In contrast, projection neuron types and programs diverge, despite exhibiting conserved transcription factor codes. Key macaque types are conserved in humans, allowing mapping of cell-type and region-specific expression of >190 genes associated with 7 human retinal diseases. Our work provides a framework for comparative single-cell analysis across tissue regions and species.
Asunto(s)
Fóvea Central/fisiología , Primates/fisiología , Retina/fisiología , Anciano , Animales , Callithrix , Femenino , Humanos , Macaca , Masculino , Retina/anatomía & histología , Células Ganglionares de la Retina/metabolismoRESUMEN
The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.
Asunto(s)
Astrocitos , Neuroprotección , Adenilil Ciclasas/metabolismo , Astrocitos/citología , Astrocitos/enzimología , Astrocitos/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Supervivencia Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Glaucoma/patología , Glaucoma/terapiaRESUMEN
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Asunto(s)
Evolución Biológica , Neuronas , Retina , Vertebrados , Visión Ocular , Animales , Humanos , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/clasificación , Análisis de Expresión Génica de una Sola Célula , Vertebrados/fisiología , Visión Ocular/fisiología , Especificidad de la Especie , Células Amacrinas/clasificación , Células Fotorreceptoras/clasificación , Células Ependimogliales/clasificación , Células Bipolares de la Retina/clasificación , Percepción VisualRESUMEN
Although the visual system extends through the brain, most vision loss originates from defects in the eye. Its central element is the neural retina, which senses light, processes visual signals, and transmits them to the rest of the brain through the optic nerve (ON). Surrounding the retina are numerous other structures, conventionally divided into anterior and posterior segments. Here, we used high-throughput single-nucleus RNA sequencing (snRNA-seq) to classify and characterize cells in six extraretinal components of the posterior segment: ON, optic nerve head (ONH), peripheral sclera, peripapillary sclera (PPS), choroid, and retinal pigment epithelium (RPE). Defects in each of these tissues are associated with blinding diseases-for example, glaucoma (ONH and PPS), optic neuritis (ON), retinitis pigmentosa (RPE), and age-related macular degeneration (RPE and choroid). From ~151,000 single nuclei, we identified 37 transcriptomically distinct cell types, including multiple types of astrocytes, oligodendrocytes, fibroblasts, and vascular endothelial cells. Our analyses revealed a differential distribution of many cell types among distinct structures. Together with our previous analyses of the anterior segment and retina, the data presented here complete a "Version 1" cell atlas of the human eye. We used this atlas to map the expression of >180 genes associated with the risk of developing glaucoma, which is known to involve ocular tissues in both anterior and posterior segments as well as the neural retina. Similar methods can be used to investigate numerous additional ocular diseases, many of which are currently untreatable.
Asunto(s)
Glaucoma , Disco Óptico , Humanos , Transcriptoma , Células Endoteliales , Glaucoma/genética , Nervio Óptico , EscleróticaRESUMEN
BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.
RESUMEN
The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens, and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some disorders, including glaucoma and cataract, are among the most prevalent causes of blindness in the world. To characterize the cell types that compose these tissues, we generated an anterior segment cell atlas of the human eye using high-throughput single-nucleus RNA sequencing (snRNAseq). We profiled 195,248 nuclei from nondiseased anterior segment tissues of six human donors, identifying >60 cell types. Many of these cell types were discrete, whereas others, especially in the lens and cornea, formed continua corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment, revealing that some cell types are unique to a single structure, whereas others are shared across tissues. The integrated cell atlas was then used to investigate cell type-specific expression patterns of more than 900 human ocular disease genes identified through either Mendelian inheritance patterns or genome-wide association studies.
Asunto(s)
Segmento Anterior del Ojo , Oftalmopatías , Adulto , Segmento Anterior del Ojo/citología , Segmento Anterior del Ojo/metabolismo , Humor Acuoso/citología , Humor Acuoso/metabolismo , Atlas como Asunto , Cuerpo Ciliar/citología , Cuerpo Ciliar/metabolismo , Oftalmopatías/genética , Estudio de Asociación del Genoma Completo , Humanos , Iris/citología , Especificidad de ÓrganosRESUMEN
Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.
Asunto(s)
Dopamina , Miopía , Masculino , Ratones , Animales , Dopamina/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Ratones Endogámicos C57BL , Miopía/genética , Miopía/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismoRESUMEN
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Humanos , Infarto del Miocardio/terapia , Trasplante de Células Madre , Miocitos CardíacosRESUMEN
Developing efficient metal-free catalysts to directly synthesize hydrogen peroxide (H2O2) through a 2-electron (2e) oxygen reduction reaction (ORR) is crucial for substituting the traditional energy-intensive anthraquinone process. Here, in-plane topological defects enriched graphene with pentagon-S and pyrrolic-N coordination (SNC) is synthesized via the process of hydrothermal and nitridation. In SNC, pentagon-S and pyrrolic-N originating from thiourea precursor are covalently grafted onto the basal plane of the graphene framework, building unsymmetrical dumbbell-like SâCâN motifs, which effectively modulates atomic and electronic structures of graphene. The SNC catalyst delivers ultrahigh H2O2 productivity of 8.1, 7.3, and 3.9 mol gcatalyst -1 h-1 in alkaline, neutral, and acidic electrolytes, respectively, together with long-term operational stability in pH-universal electrolytes, outperforming most reported carbon catalysts. Theoretical calculations further unveil that defective SâCâN motifs efficiently optimize the binding strength to OOH* intermediate and substantially diminish the kinetic barrier for reducing O2 to H2O2, thereby promoting the intrinsic activity of 2e-ORR.
RESUMEN
Axially chiral cycloalkylidenes are interesting but less developed axially chiral molecules. Here, a bispidine-based chiral amine catalytic system was developed to promote efficiently the asymmetric Knoevenagel condensation of N-protected oxindoles and benzofuranones with 4-substituted cyclohexanones. A variety of alkylidenecycloalkanes with stable axial chirality were obtained in good yields and fairly good er (enantiomeric ratio). Based on the absolute configuration determination of product and DFT calculations, a possible mechanism of stereoselective induction was proposed.
RESUMEN
Loss of retinal ganglion cells (RGCs) is central to the pathogenesis of optic neuropathies such as glaucoma. Increased RGC cAMP signaling is neuroprotective. We have shown that displacement of the cAMP-specific phosphodiesterase PDE4D3 from an RGC perinuclear compartment by expression of the modified PDE4D3 N-terminal peptide 4D3(E) increases perinuclear cAMP and protein kinase A activity in cultured neurons and in vivo RGC survival after optic nerve crush (ONC) injury. To explore mechanisms by which PDE4D3 displacement promotes neuroprotection, in this study mice intravitreally injected with an adeno-associated virus to express an mCherry-tagged 4D3(E) peptide were subjected to ONC injury and analyzed by single cell RNA-sequencing (scRNA-seq). 4D3(E)-mCherry expression was associated with an attenuation of injury-induced changes in gene expression, thereby supporting the hypothesis that enhanced perinuclear PKA signaling promotes neuroprotective RGC gene expression.
Asunto(s)
Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Ratones , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/genética , Regulación de la Expresión Génica , Modelos Animales de Enfermedad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Compresión Nerviosa , Supervivencia Celular , Inyecciones Intravítreas , Transducción de Señal , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Células CultivadasRESUMEN
RATIONALE: Long-term exercise provides reliable cardioprotection via mechanisms still incompletely understood. Although traditionally considered a thermogenic tissue, brown adipose tissue (BAT) communicates with remote organs (eg, the heart) through its endocrine function. BAT expands in response to exercise, but its involvement in exercise cardioprotection remains undefined. OBJECTIVE: This study investigated whether small extracellular vesicles (sEVs) secreted by BAT and their contained microRNAs (miRNAs) regulate cardiomyocyte survival and participate in exercise cardioprotection in the context of myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS: Four weeks of exercise resulted in a significant BAT expansion in mice. Surgical BAT ablation before MI/R weakened the salutary effects of exercise. Adeno-associated virus 9 vectors carrying short hairpin RNA targeting Rab27a (a GTPase required for sEV secretion) or control viruses were injected in situ into the interscapular BAT. Exercise-mediated protection against MI/R injury was greatly attenuated in mice whose BAT sEV secretion was suppressed by Rab27a silencing. Intramyocardial injection of the BAT sEVs ameliorated MI/R injury, revealing the cardioprotective potential of BAT sEVs. Discovery-driven experiments identified miR-125b-5p, miR-128-3p, and miR-30d-5p (referred to as the BAT miRNAs) as essential BAT sEV components for mediating cardioprotection. BAT-specific inhibition of the BAT miRNAs prevented their upregulation in plasma sEVs and hearts of exercised mice and attenuated exercise cardioprotection. Mechanistically, the BAT miRNAs cooperatively suppressed the proapoptotic MAPK (mitogen-associated protein kinase) pathway by targeting a series of molecules (eg, Map3k5, Map2k7, and Map2k4) in the signaling cascade. Delivery of BAT sEVs into hearts or cardiomyocytes suppressed MI/R-related MAPK pathway activation, an effect that disappeared with the combined use of the BAT miRNA inhibitors. CONCLUSIONS: The sEVs secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart. These results provide novel insights into the mechanisms underlying the BAT-cardiomyocyte interaction and highlight BAT sEVs and their contained miRNAs as alternative candidates for exercise cardioprotection.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Daño por Reperfusión Miocárdica , Tejido Adiposo Pardo/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Condicionamiento Físico AnimalRESUMEN
[Correction Notice: An Erratum for this article was reported online in Cultural Diversity & Ethnic Minority Psychology on Oct 07 2024 (see record 2025-32719-001). In the article, the authors wish to remove biased language and inappropriate discussion surrounding the comparison between the Tibetan sample and the non-Tibetan samples, and the text discussing the development of Tibetan children's awareness of their own racial prejudice. The necessary corrections are present in the erratum.] Objectives: Individuals often automatically have more empathy for same-race members. However, there are no studies on racial bias in empathy (RBE) among Tibetan school-aged children. The present study aimed to examine the development of RBEs, including racial bias in cognitive empathy, affective empathy, and behavioral empathy, in Tibetan school-aged children. METHOD: In Experiment 1 (N = 108, aged 7-12), ethnic identity was primed using Tibetan and Han names. Then negative and neutral events were applied to measure the RBEs of Tibetan children. In Experiment 2 (N = 148, aged 7-12), negative events were replaced by pain events. In Experiment 3 (N = 60, aged 7-12), Tibetan children's ethnic identity and the awareness of the wrongfulness of ethnic intergroup bias were added to examine the underlying mechanism. RESULT: Results found that RBEs increased among Tibetan children aged 7-10 and decreased among those aged 11-12, Moreover, we analyzed age as a continuous variable and found that 10 years old was the inflection point in the development of RBEs in Tibetan children. Importantly, children aged 11-12 years old realized more wrongfulness of ethnic intergroup bias than children aged 7-10. The ethnic identity of Tibetan children aged 7-10 mediated the relation between age group and RBEs. And the wrongfulness of ethnic intergroup bias mediated the link between age group and RBEs in Tibetan children aged 9-12. CONCLUSION: Our study sheds light on the development of RBEs in Tibetan school-aged children and highlights the importance of identifying the appropriate timing for intervening in prejudice. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
RESUMEN
BACKGROUND: This project aimed to research the significance of THRIL in the diagnosis of benign and malignant solitary pulmonary nodules (SPNs) and to investigate the role of THRIL/miR-99a in malignant SPNs. METHODS: The study groups consisted of 169 patients with SPN and 74 healthy subjects. The differences in THRIL levels were compared between the two groups and the healthy group. The receiver operating characteristic curve (ROC) was utilized to analyze the THRIL's significance in detecting benign and malignant SPN. Pearson correlation and binary regression coefficients represented the association between THRIL and SPN. CCK-8 assay, Transwell assay, and flow cytometry were utilized to detect the regulatory effect of THRIL silencing. The interaction between THRIL, miR-99a, and IGF1R was confirmed by the double luciferase reporter gene. RESULTS: There were differences in THRIL expression in the healthy group, benign SPN group, and malignant SPN group. High accuracy of THRIL in the diagnosis of benign SPN and malignant SPN was observed. THRIL was associated with the development of SPN. The expression of THRIL was upregulated and miR-99a was downregulated in lung cancer cells. The double luciferase report experiment confirmed the connections between THRIL/miR-99a/IGF1R. Silencing THRIL could suppress cell proliferation, migration, and invasion and promote cell apoptosis by binding miR-99a. CONCLUSION: The detection of THRIL in serum is useful for the assessment of malignant SPN. THRIL can regulate the expression of IGF1R through miR-99a, thereby promoting the growth of lung cancer cells and inhibiting apoptosis.
Asunto(s)
Neoplasias Pulmonares , MicroARNs , Nódulos Pulmonares Múltiples , ARN Largo no Codificante , Nódulo Pulmonar Solitario , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pulmonares/diagnóstico , Pulmón/patología , Nódulo Pulmonar Solitario/diagnóstico , Nódulos Pulmonares Múltiples/patología , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
Fe3O4is an environmentally friendly gas sensing material with high response, but the cross-response to various analytes and poor thermal stability limit its practical applications. In this work, we prepared Fe3O4@uio66 core-shell composite via a facile method. The selective response to volatile organic compounds, especially to electrolyte vapors of lithium-ion batteries, as well as long-term stability of Fe3O4@uio66 has been dramatically enhanced compared to pure Fe3O4, due to the preconcentrator feature and thermal stability of the uio66 thin shell. Real-time detection of electrolyte leakage for an actual punctured lithium-ion battery was further demonstrated. The Fe3O4@uio66 sensor, after aging for 3 months, was able to detect the electrolyte leakage in 30 s, while the voltage of the punctured battery was maintained at the same level as that of a pristine battery over 6 h. This practical test results verified ability of the Fe3O4@uio66 sensor with long-term aging stability for hours of early safety warning of lithium-ion batteries.
RESUMEN
Increased intraocular pressure (IOP) represents a major risk factor for glaucoma, a prevalent eye disease characterized by death of retinal ganglion cells; lowering IOP is the only proven treatment strategy to delay disease progression. The main determinant of IOP is the equilibrium between production and drainage of aqueous humor, with compromised drainage generally viewed as the primary contributor to dangerous IOP elevations. Drainage occurs through two pathways in the anterior segment of the eye called conventional and uveoscleral. To gain insights into the cell types that comprise these pathways, we used high-throughput single-cell RNA sequencing (scRNAseq). From â¼24,000 single-cell transcriptomes, we identified 19 cell types with molecular markers for each and used histological methods to localize each type. We then performed similar analyses on four organisms used for experimental studies of IOP dynamics and glaucoma: cynomolgus macaque (Macaca fascicularis), rhesus macaque (Macaca mulatta), pig (Sus scrofa), and mouse (Mus musculus). Many human cell types had counterparts in these models, but differences in cell types and gene expression were evident. Finally, we identified the cell types that express genes implicated in glaucoma in all five species. Together, our results provide foundations for investigating the pathogenesis of glaucoma and for using model systems to assess mechanisms and potential interventions.
Asunto(s)
Humor Acuoso/metabolismo , Modelos Animales de Enfermedad , Ojo/metabolismo , Glaucoma/patología , Presión Intraocular , Malla Trabecular/metabolismo , Transcriptoma , Animales , Biomarcadores/análisis , Ojo/citología , Glaucoma/metabolismo , Humanos , Macaca fascicularis , Macaca mulatta , Ratones , Especificidad de la Especie , PorcinosRESUMEN
Developing efficient and robust hydrogen evolution reaction (HER) catalysts for scalable and sustainable hydrogen production through electrochemical water splitting is strategic and challenging. Herein, heterogeneous Mo8 O26 -NbNx Oy supported on N-doped graphene (defined as Mo8 O26 -NbNx Oy /NG) is synthesized by controllable hydrothermal reaction and nitridation process. The O-exposed Mo8 O26 clusters covalently confined on NbNx Oy nanodomains provide a distinctive interface configuration and appropriate electronic structure, where fully exposed multiple active sites give excellent HER performance beyond commercial Pt/C catalyst in pH-universal electrolytes. Theoretical studies reveal that the Mo8 O26 -NbNx Oy interface with electronic reconstruction affords near-optimal hydrogen adsorption energy and enhanced initial H2 O adsorption. Furthermore, the terminal O atoms in Mo8 O26 clusters cooperate with Nb atoms to promote the initial H2 O adsorption, and subsequently reduce the H2 O dissociation energy, accelerating the entire HER kinetics.
RESUMEN
Surface oxygen vacancies (Vo ) regulation is an effective strategy to improve the electrochemical CO2 reduction reaction (CO2 RR) performance by lowering the activation energy barrier of CO2 ; however, the lack of precise control over the local atomic structures severely hinders the large-scale application of Vo -activated electrocatalyst for CO2 RR. Herein, an efficient strategy to facilitate CO2 activation is developed by introducing Vo into transition metal nanoparticles (NPs) with a steam-assisted chemical vapor deposition method. With the steam process, abundant surface Vo are introduced into the assembled Ni-Fe bimetallic NPs composite (H-NiFe/NG), which adjust surface Ni/Fe atoms to low-valent coordinatively unsaturated Ni (+1)/Fe (+2) sites, serving as electron-rich centers to adsorb and activate inert CO2 molecules. The as-prepared H-NiFe/NG composite exhibits excellent catalytic performance with a maximum Faradaic efficiency of 94% at -0.80 V (vs RHE) for CO production with remarkable stability. The density function theory calculations corroborate that the Ni atoms around surface Vo significantly lower the energy barrier for COOH* intermediate formation, which gives a low overpotential for reducing CO2 to CO, exhibiting superior CO2 RR performance. This general synthetic strategy provides a new insight to introduce surface Vo on transition metal for efficient CO2 reduction.
Asunto(s)
Nanocompuestos , Vapor , Dióxido de Carbono/química , Catálisis , OxígenoRESUMEN
Infectious bronchitis virus (IBV) causes avian infectious bronchitis (IB) and there are multiple serotypes worldwide originating from deletions, insertions, point mutations, and RNA recombination. In this study, a recombinant IBV, named CK/CH/MY/2020, was isolated from southwest China. Sequencing and phylogenetic analysis revealed that CK/CH/MY/2020 consists of 27,614 nucleotides and belongs to the GI-28 genotype. Moreover, the strain is a recombination product originating from three live attenuated vaccine strains (H120, 4/91, and LDT3-A). The recombination is complicated involving at least nine recombination sites; the first 3/5 portion is mainly composed of H120 and 4/91, and the second 2/5 contains LDT3-A. Pathogenicity analysis showed that CK/CH/MY/2020 could cause respiratory and kidney diseases in chickens resulting in moderate mortality. Therefore, the recombinant strain is more virulent than the attenuated vaccine strains. This study shows that even in the absence of wild strains, the recombination and revirulence of multiple attenuated vaccines could occur simultaneously, which also highlights the continuous evolution in IBV.