Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nano Lett ; 21(5): 2272-2280, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33635655

RESUMEN

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.


Asunto(s)
Técnicas Biosensibles/métodos , Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Nanotubos de Carbono , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/análisis , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos Virales/análisis , Humanos , Proteínas Inmovilizadas/metabolismo , Nanotecnología , Pandemias , Unión Proteica , SARS-CoV-2/inmunología , Espectrometría de Fluorescencia , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
J Nanobiotechnology ; 19(1): 431, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930290

RESUMEN

BACKGROUND: Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. RESULTS: Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. CONCLUSIONS: While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.


Asunto(s)
Arabidopsis/metabolismo , Materiales Biocompatibles/química , Nanotubos de Carbono/química , Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Polietileneimina/química , Polietileneimina/farmacología , ARN/química , ARN/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Propiedades de Superficie , Transcriptoma/efectos de los fármacos
3.
J Am Chem Soc ; 142(3): 1254-1264, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31887029

RESUMEN

Noncovalent adsorption of DNA on nanoparticles has led to their widespread implementation as gene delivery tools and optical probes. Yet, the behavior and stability of DNA-nanoparticle complexes once applied in biomolecule-rich, in vivo environments remains unpredictable, whereby biocompatibility testing usually occurs in serum. Here, we demonstrate time-resolved measurements of exchange dynamics between solution-phase and adsorbed corona-phase DNA and protein biomolecules on single-walled carbon nanotubes (SWCNTs). We capture real-time binding of fluorophore-labeled biomolecules, utilizing the SWCNT surface as a fluorescence quencher, and apply this corona exchange assay to study protein corona dynamics on ssDNA-SWCNT-based dopamine sensors. We study exchange of two blood proteins, albumin and fibrinogen, adsorbing to and competitively displacing (GT)6 vs (GT)15 ssDNA from ssDNA-SWCNTs. We find that (GT)15 binds to SWCNTs with a higher affinity than (GT)6 and that fibrinogen interacts with ssDNA-SWCNTs more strongly than albumin. Albumin and fibrinogen cause a 52.2% and 78.2% attenuation of the dopamine nanosensor response, coinciding with 0.5% and 3.7% desorption of (GT)6, respectively. Concurrently, the total surface-adsorbed fibrinogen mass is 168% greater than that of albumin. Binding profiles are fit to a competitive surface exchange model which recapitulates the experimental observation that fibrinogen has a higher affinity for SWCNTs than albumin, with a fibrinogen on-rate constant 1.61-fold greater and an off-rate constant 0.563-fold smaller than that of albumin. Our methodology presents a generic route to assess real-time corona exchange on nanoparticles in solution phase and more broadly motivates testing of nanoparticle-based technologies in blood plasma rather than the more ubiquitously tested serum conditions.


Asunto(s)
Nanotubos de Carbono/química , Corona de Proteínas/química , Espectrometría de Fluorescencia/métodos , Cinética , Ligandos
4.
Angew Chem Int Ed Engl ; 59(52): 23668-23677, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32931615

RESUMEN

When nanoparticles enter biological environments, proteins adsorb to form the "protein corona" which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Corona de Proteínas/química , Humanos
6.
ACS Nano ; 15(6): 10309-10317, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34105936

RESUMEN

The global SARS-CoV-2 coronavirus pandemic has led to a surging demand for rapid and efficient viral infection diagnostic tests, generating a supply shortage in diagnostic test consumables including nucleic acid extraction kits. Here, we develop a modular method for high-yield extraction of viral single-stranded nucleic acids by using "capture" ssDNA sequences attached to carbon nanotubes. Target SARS-CoV-2 viral RNA can be captured by ssDNA-nanotube constructs via hybridization and separated from the liquid phase in a single-tube system with minimal chemical reagents, for downstream quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. This nanotube-based extraction method enables 100% extraction yield of target SARS-CoV-2 RNA from phosphate-buffered saline in comparison to ∼20% extraction yield when using a commercial silica-column kit. Notably, carbon nanotubes enable extraction of nucleic acids directly from 50% human saliva with a similar efficiency as achieved with commercial DNA/RNA extraction kits, thereby bypassing the need for further biofluid purification and avoiding the use of commercial extraction kits. Carbon nanotube-based extraction of viral nucleic acids facilitates high-yield and high-sensitivity identification of viral nucleic acids such as the SARS-CoV-2 viral genome with a reduced reliance on reagents affected by supply chain obstacles.


Asunto(s)
COVID-19 , Nanotubos de Carbono , Ácidos Nucleicos , Humanos , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , SARS-CoV-2 , Sensibilidad y Especificidad
7.
ACS Nano ; 14(10): 13794-13805, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32955853

RESUMEN

Single-walled carbon nanotubes (SWCNT) are used in neuroscience for deep-brain imaging, neuron activity recording, measuring brain morphology, and imaging neuromodulation. However, the extent to which SWCNT-based probes impact brain tissue is not well understood. Here, we study the impact of (GT)6-SWCNT dopamine nanosensors on SIM-A9 mouse microglial cells and show SWCNT-induced morphological and transcriptomic changes in these brain immune cells. Next, we introduce a strategy to passivate (GT)6-SWCNT nanosensors with PEGylated phospholipids to improve both biocompatibility and dopamine imaging quality. We apply these passivated dopamine nanosensors to image electrically stimulated striatal dopamine release in acute mouse brain slices, and show that slices labeled with passivated nanosensors exhibit higher fluorescence response to dopamine and measure more putative dopamine release sites. Hence, this facile modification to SWCNT-based dopamine probes provides immediate improvements to both biocompatibility and dopamine imaging functionality with an approach that is readily translatable to other SWCNT-based neurotechnologies.


Asunto(s)
Nanotubos de Carbono , Animales , Dopamina , Ratones , Microglía , Nanotubos de Carbono/toxicidad , Transcriptoma
8.
medRxiv ; 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33173881

RESUMEN

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach towards these ends. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. Presence of the SARS-CoV-2 spike protein elicits a robust, two-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism, and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.

9.
Sci Adv ; 5(12): eaay3771, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31897432

RESUMEN

Imaging neuromodulation with synthetic probes is an emerging technology for studying neurotransmission. However, most synthetic probes are developed through conjugation of fluorescent signal transducers to preexisting recognition moieties such as antibodies or receptors. We introduce a generic platform to evolve synthetic molecular recognition on the surface of near-infrared fluorescent single-wall carbon nanotube (SWCNT) signal transducers. We demonstrate evolution of molecular recognition toward neuromodulator serotonin generated from large libraries of ~6.9 × 1010 unique ssDNA sequences conjugated to SWCNTs. This probe is reversible and produces a ~200% fluorescence enhancement upon exposure to serotonin with a K d = 6.3 µM, and shows selective responsivity over serotonin analogs, metabolites, and receptor-targeting drugs. Furthermore, this probe remains responsive and reversible upon repeat exposure to exogenous serotonin in the extracellular space of acute brain slices. Our results suggest that evolution of nanosensors could be generically implemented to develop other neuromodulator probes with synthetic molecular recognition.


Asunto(s)
Rayos Infrarrojos , Neurotransmisores/química , Serotonina/química , Serotonina/metabolismo , Transmisión Sináptica/fisiología , Animales , Secuencia de Bases , Encéfalo/citología , ADN de Cadena Simple/química , Espacio Extracelular/diagnóstico por imagen , Ligandos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Nanotubos de Carbono/química , Imagen Óptica , Polinucleótidos/química , Transductores
10.
Sci Adv ; 5(7): eaaw3108, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31309147

RESUMEN

Neuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000-1300 nm), near infrared catecholamine nanosensor (nIRCat). We demonstrate that nIRCats can be used to measure electrically and optogenetically evoked dopamine release in brain tissue, revealing hotspots with a median size of 2 µm. We also demonstrated that nIRCats are compatible with dopamine pharmacology and show D2 autoreceptor modulation of evoked dopamine release, which varied as a function of initial release magnitude at different hotspots. Together, our data demonstrate that nIRCats and other nanosensors of this class can serve as versatile synthetic optical tools to monitor neuromodulatory neurotransmitter release with high spatial resolution.


Asunto(s)
Técnicas Biosensibles , Catecolaminas/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Imagen Molecular , Animales , Catecolaminas/química , Ratones , Imagen Molecular/métodos , Neuronas , Espectroscopía Infrarroja Corta , Transmisión Sináptica
11.
Methods Mol Biol ; 1575: 363-380, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28255893

RESUMEN

Surface engineering of nanoparticles has recently emerged as a promising technique for synthetic molecular recognition of biological analytes. In particular, the use of synthetic heteropolymers adsorbed onto the surface of a nanoparticle can yield selective detection of a molecular target. Synthetic molecular recognition has unique advantages in leveraging the photostability, versatility, and exceptional chemical stability of nanomaterials. In particular, single-walled carbon nanotubes (SWNT) exhibit a large Stokes shift and near infrared emission for maximum biological sample transparency. Optical biosensors with high signal transduction and molecular specificity can be synthesized with amphiphilic heteropolymers grafted to SWNT, and discovered by high-throughput screening. Herein, we describe the development and the characterization of surface-engineered nanoparticles, or "synthetic antibodies," for protein detection.


Asunto(s)
Anticuerpos/química , Técnicas Biosensibles/métodos , Adsorción , Microscopía Fluorescente , Nanotubos de Carbono , Propiedades de Superficie
12.
J Vis Exp ; (119)2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28117777

RESUMEN

Semiconducting single-wall carbon nanotubes (SWNTs) are a class of optically active nanomaterial that fluoresce in the near infrared, coinciding with the optical window where biological samples are most transparent. Here, we outline techniques to adsorb amphiphilic polymers and polynucleic acids onto the surface of SWNTs to engineer their corona phases and create novel molecular sensors for small molecules and proteins. These functionalized SWNT sensors are both biocompatible and stable. Polymers are adsorbed onto the nanotube surface either by direct sonication of SWNTs and polymer or by suspending SWNTs using a surfactant followed by dialysis with polymer. The fluorescence emission, stability, and response of these sensors to target analytes are confirmed using absorbance and near-infrared fluorescence spectroscopy. Furthermore, we demonstrate surface immobilization of the sensors onto glass slides to enable single-molecule fluorescence microscopy to characterize polymer adsorption and analyte binding kinetics.


Asunto(s)
Materiales Biomiméticos/química , Nanotubos de Carbono/química , Polímeros/química , Adsorción , Sonicación , Espectroscopía Infrarroja Corta , Tensoactivos/química
13.
Nat Nanotechnol ; 12(4): 368-377, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28114298

RESUMEN

A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.


Asunto(s)
Colorantes Fluorescentes/química , Técnicas Analíticas Microfluídicas/métodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Proteínas/análisis , Análisis de la Célula Individual/métodos , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Límite de Detección , Pichia/química , Pichia/citología , Pichia/metabolismo , Proteínas/química , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA