Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 169-178, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37838079

RESUMEN

Chronic stress is a major risk factor for Major Depressive Disorder (MDD), and it has been shown to impact the immune system and cause microglia activation in the medial prefrontal cortex (mPFC) involved in the pathogenesis of depression. The aim of this study is to further investigate cellular and molecular mechanisms underlying persistent depression behavior in sex specific manner, which is observed clinically. Here, we report that both male and female mice exhibited depression-like behavior following exposure to chronic stress. However, only female mice showed persistent depression-like behavior, which was associated with microglia activation in mPFC, characterized by distinctive alterations in the phenotype of microglia. Given these findings, to further investigate the underlying molecular mechanisms associated with persistent depression-like behavior and microglia activation in female mice, we used translating-ribosome affinity purification (TRAP). We find that Toll like receptor 4 (TLR4) signaling is casually related to persistent depression-like behavior in female mice. This is supported by the evidence that the fact that genetic ablation of TLR4 expression in microglia significantly reduced the persistent depression-like behavior to baseline levels in female mice. This study tentatively supports the hypothesis that the TLR4 signaling in microglia may be responsible for the sex differences in persistent depression-like behavior in female.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Receptor Toll-Like 4 , Animales , Femenino , Masculino , Ratones , Trastorno Depresivo Mayor/metabolismo , Microglía/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo , Receptor Toll-Like 4/metabolismo
2.
Brain Behav Immun ; 118: 252-272, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461954

RESUMEN

Immune system dysfunction is increasingly recognized as a significant feature that contributes to Alzheimer's disease (AD) pathogenesis, reflected by alterations in central and peripheral responses leading to detrimental mechanisms that can contribute to the worsening of the disease. The damaging alterations in the peripheral immune system may disrupt the peripheral-central immune crosstalk, implicating the gut microbiota in this complex interaction. The central hypothesis posits that the immune signature inherently harbored in bone marrow (BM) cells can be transferred through allogeneic transplantation, influencing the recipient's immune system and modulating peripheral, gut, and brain immune responses. Employing a genetically modified mouse model to develop AD-type pathology we found that recipient wild-type (WT) mice engrafted with AD-derived BM, recapitulated the peripheral immune inflammatory donor phenotype, associated with a significant acceleration of cognitive deterioration in the absence of any overt change in AD-type amyloid neuropathology. Moreover, transcriptomic and phylogenetic 16S microbiome analysis evidence on these animals revealed a significantly impaired expression of genes associated with synaptic plasticity and neurotransmission in the brain and reduced bacteria diversity, respectively, compared to mice engrafted with WT BM. This investigation sheds light on the pivotal role of the peripheral immune system in the brain-gut-periphery axis and its profound potential to shape the trajectory of AD. In summary, this study advances our understanding of the complex interplay among the peripheral immune system, brain functionality, and the gut microbiome, which collectively influence AD onset and progression.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedades del Sistema Nervioso , Ratones , Animales , Enfermedad de Alzheimer/patología , Microbioma Gastrointestinal/fisiología , Trasplante de Médula Ósea , Filogenia , Fenotipo , Plasticidad Neuronal , Ratones Transgénicos
3.
J Pharmacol Sci ; 145(4): 308-312, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33712281

RESUMEN

Astrocytes are the most abundant cell type in the central nervous system (CNS) and their major function is to maintain homeostasis of the CNS by exerting various functions. Simultaneously, reactive astrocytes are well known to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). Reactive astrocytes, induced by amyloid beta peptide (Aß), the main component of the neuritic plaques found in AD, induce neuroinflammation, producing cytokines that lead to neuronal cell death in AD. Phloroglucinol,a polyphenol monomer and a component of phlorotannin, is found at sufficient levels in Ecklonia cava of the Laminariaceae family. Recently, several studies have reported that phloroglucinol has the ability to trap free radicals in lung fibroblasts or cancer cells. However, the effects of phloroglucinol in astrocytes have not yet been studied. Here, we found that phloroglucinol inhibits the generation of ROS induced by oligomeric Aß1-42 (oAß1-42) treatment in primary astrocytes. Futhermore, phloroglucinol was shown to ameliorate the protein expression of glial fibrillary acidic protein, a marker of reactive astrocytes, after treatment with oAß1-42. These results indicate that phloroglucinol exerts antioxidant effects in primary cultured astrocytes and attenuates the astrocytic activation induced by oAß1-42.


Asunto(s)
Péptidos beta-Amiloides/efectos adversos , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Depuradores de Radicales Libres , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/metabolismo , Floroglucinol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/citología , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Laminaria/química , Ratones , Floroglucinol/aislamiento & purificación
4.
J Pharmacol Sci ; 143(4): 290-299, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32507685

RESUMEN

The pathophysiological roles of astrocytes in the reactive state are thought to have important significance in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). However, the detailed mechanisms underlying the transition of astrocytes from the resting state to the reactive state during neurodegenerative disease largely remain to be defined. Here, we investigated the pathways involved in activating astrocytes from the resting state to the reactive state in primary cultured astrocytes treated with oligomeric Aß and in the hippocampus of 5XFAD mice. Treatment with oligomeric Aß induced an increase in reactive astrocytes, as assessed by the protein level of glial fibrillary acidic protein (GFAP) and this increase was caused by STAT3 phosphorylation in primary cultured astrocytes. The administration of Stattic, an inhibitor of STAT3, rescued the activation of astrocytes in primary cultured astrocytes and in the hippocampus of 6-month-old 5XFAD mice as well as impairments in learning and memory. Collectively, these results demonstrated that reactive astrocytes in the AD brain are induced via STAT3 and the impairments in learning and memory observed in 5XFAD mice are rescued by STAT3 inhibition, suggesting that the inhibition of STAT3 phosphorylation in astrocytes may be a novel therapeutic target for cognitive impairment in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Silenciador del Gen , Factor de Transcripción STAT3 , Enfermedad de Alzheimer/terapia , Animales , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Ratones Transgénicos , Terapia Molecular Dirigida , Fosforilación
5.
J Pharmacol Sci ; 139(3): 249-253, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30718079

RESUMEN

The duplication of human chromosome 15q11-13 is known to be associated with an estimated 1.1% of autism cases. Here, we investigated whether differentiation into neurons and astrocytes is altered in fetal neural stem cells (FNSCs) isolated from the mouse model of 15q11-13 duplication syndrome (patDp/+ mice). In patDp/+ mice-derived FNSCs, multipotency was maintained for a longer period, the population of neurons was downregulated, and that of astrocytes was upregulated significantly after differentiation induction. These results suggest that the dysregulation of FNSCs differentiation could affect cortical development and behavioral deficits in the early postnatal stage shown in the patDp/+ mice.


Asunto(s)
Trastorno del Espectro Autista/genética , Diferenciación Celular/fisiología , Discapacidad Intelectual/fisiopatología , Células-Madre Neurales/citología , Animales , Astrocitos/citología , Trastorno del Espectro Autista/fisiopatología , Aberraciones Cromosómicas , Cromosomas Humanos Par 15 , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología
6.
Chem Senses ; 43(4): 213-221, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29438489

RESUMEN

Olfactory loss is known to affect both mood and quality of life. Transient anosmia was induced in mice to study the resulting changes in mood, behavior, and on a molecular level. Transient anosmia was induced by a single intranasal instillation of ZnSO4 in BALB/c mice. Hematoxylin and eosin (HE) staining, and potato chip finding test were performed to confirm olfactory loss. Tail suspension, forced swim, and splash tests were performed to evaluate depression-related behavior; while the open field, and elevated plus maze tests were used to evaluate anxiety-related behavior. The mRNA levels of amygdalar corticotropin-releasing hormone (CRH) and hypothalamic glucocorticoid receptor (GR) were quantified using real-time PCR to confirm relevant molecular change. Olfactory loss was confirmed 1-2.5 weeks after induction, and this loss was subsequently reversed over time. The results of the behavioral tests indicated increased depression-like and reduced anxiety-like behavior at week 1. Accordingly, PCR data identified decreased amygdalar CRH expression at week 1. These results suggest that transient anosmia induces both depressive and anxiolytic behavior as a result of decreased amygdalar CRH in a mouse model of anosmia.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Trastornos del Olfato/patología , Sulfato de Zinc/toxicidad , Administración Intranasal , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/etiología , Hormona Liberadora de Corticotropina/genética , Depresión/etiología , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos BALB C , Trastornos del Olfato/inducido químicamente , Trastornos del Olfato/complicaciones , Mucosa Olfatoria/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Pharmacol Res ; 128: 110-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28823725

RESUMEN

Mounting evidence suggests that the etiology of autism spectrum disorders (ASDs) is profoundly influenced by exposure to environmental factors, although the precise molecular and cellular links remain ill-defined. In this study, we examined how exposure to valproic acid (VPA) during pregnancy is associated with an increased incidence of ASD. A mouse model was established by injecting VPA at embryonic day 13, and its behavioral phenotypes including impaired social interaction, increased repetitive behaviors and decreased nociception were observed at postnatal days 21-42. VPA-treated mice showed dysregulation of synaptic structure in cortical neurons, including a reduced proportion of filopodium-type and stubby spines and increased proportions of thin and mushroom-type spines, along with a decreased spine head size. We also found that VPA-treatment led to decreased expression of phosphate and tensin homolog (PTEN) and increased levels of p-AKT protein in the hippocampus and cortex. Our data suggest that there is a correlation between VPA exposure and dysregulation of PTEN with ASD-like behavioral and neuroanatomical changes, and this may be a potential mechanism of VPA-induced ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Espinas Dendríticas/patología , Fosfohidrolasa PTEN/metabolismo , Animales , Trastorno del Espectro Autista/inducido químicamente , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones Endogámicos BALB C , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Valproico
8.
J Pharmacol Sci ; 133(4): 261-267, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28408165

RESUMEN

Alzheimer's disease is the most common disease underlying dementia in humans. Two major neuropathological hallmarks of AD are neuritic plaques primarily composed of amyloid beta peptide and neurofibrillary tangles primarily composed of hyperphosphorylated tau. In addition to impaired memory function, AD patients often display neuropsychiatric symptoms and abnormal emotional states such as confusion, delusion, manic/depressive episodes and altered fear status. Brains from AD patients show atrophy of the amygdala which is involved in fear expression and emotional processing as well as hippocampal atrophy. However, which molecular changes are responsible for the altered emotional states observed in AD remains to be elucidated. Here, we observed that the fear response as assessed by evaluating fear memory via a cued fear conditioning test was impaired in 5XFamilial AD (5XFAD) mice, an animal model of AD. Compared to wild-type mice, 5XFAD mice showed changes in the phosphorylation of twelve proteins in the amygdala. Thus, our study provides twelve potential protein targets in the amygdala that may be responsible for the impairment in fear memory in AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Amígdala del Cerebelo/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/metabolismo , Lipoproteínas/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Amígdala del Cerebelo/patología , Animales , Atrofia , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/fisiología , Quinasa de Punto de Control 2/fisiología , Modelos Animales de Enfermedad , Emociones , Miedo , Hipocampo/patología , Lipoproteínas/fisiología , Memoria , Ratones Transgénicos , Fosforilación/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
Korean J Parasitol ; 54(3): 253-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27417078

RESUMEN

In the era of (pre) elimination setting, the prevalence of malaria has been decreasing in most of the previously endemic areas. Therefore, effective cost- and time-saving validated pooling strategy is needed for detection of malaria in low transmission settings. In this study, optimal pooling numbers and lowest detection limit were assessed using known density samples prepared systematically, followed by genomic DNA extraction and nested PCR. Pooling strategy that composed of 10 samples in 1 pool, 20 µl in 1 sample, was optimal, and the parasite density as low as 2 p/µl for both falciparum and vivax infection was enough for detection of malaria. This pooling method showed effectiveness for handling of a huge number of samples in low transmission settings (<9% positive rate). The results indicated that pooling of the blood samples before DNA extraction followed by usual nested PCR is useful and effective for detection of malaria in screening of hidden cases in low-transmission settings.


Asunto(s)
Sangre/parasitología , ADN Protozoario/análisis , Malaria/diagnóstico , Tamizaje Masivo/métodos , Parasitología/métodos , Plasmodium/aislamiento & purificación , Manejo de Especímenes/métodos , ADN Protozoario/genética , Humanos , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/genética , Reacción en Cadena de la Polimerasa/métodos
10.
Mediators Inflamm ; 2015: 235797, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26294848

RESUMEN

LDL plays an important role in atherosclerotic plaque formation and macrophage differentiation. However, there is no report regarding the oxidation degree of LDL and macrophage differentiation. Our study has shown that the differentiation into M1 or M2 macrophages is related to the lipid oxidation level of LDL. Based on the level of lipid peroxidation, LDL is classified into high-oxidized LDL (hi-oxLDL) and low-oxidized LDL (low-oxLDL). The differentiation profiles of macrophages were determined by surface receptor expression and cytokine secretion profiles. Low-oxLDL induced CD86 expression and production of TNF-α and IL-12p40 in THP-1 cells, indicating an M1 macrophage phenotype. Hi-oxLDL induced mannose receptor expression and production of IL-6 and monocyte chemoattractant protein-1, which mostly match the phenotype of M2 macrophages. Further supporting evidence for an M2 polarization by hi-oxLDL was the induction of LOX-1 in THP-1 cells treated with hi-oxLDL but not with low-oxLDL. Similar results were obtained in primary human monocytes. Therefore, our results strongly suggest that the oxidation degree of LDL influences the differentiation of monocytes into M1 or M2 macrophages and determines the inflammatory fate in early stages of atherosclerosis.


Asunto(s)
Lipoproteínas LDL/farmacología , Monocitos/citología , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Microscopía Confocal , Monocitos/efectos de los fármacos
11.
Mol Nutr Food Res ; 67(21): e2300156, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37439457

RESUMEN

SCOPE: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. METHODS AND RESULTS: The study finds that treatment with BDPP significantly decreases depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. The study also finds that BDPP treatment reverses microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. CONCLUSION: The findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway may provide a new avenue for preventing the manifestation of psychiatric impairments including stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.


Asunto(s)
Depresión , Proteína HMGB1 , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Microglía , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Ansiedad/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/metabolismo
12.
PNAS Nexus ; 2(8): pgad251, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37614669

RESUMEN

Forkhead box P3 (Foxp3) is a transcription factor that influences functioning of regulatory T cells (Tregs) that modulate peripheral immune response. Treg-mediated innate immunity and Treg-mediated adaptive immunity are receiving considerable attention for their implication in mechanisms associated with anxiety and depression. Here, we demonstrated that depletion of Foxp3-expressing cells causally promotes transient anxiety- and depression-like behaviors associated with inflammasome activation in "depletion of regulatory T cell" (DEREG) mice. We found that restoration of Foxp3-expressing cells causally reverses neurobehavioral changes through alteration of innate immune responses as assessed by caspase-1 activity and interleukin-1ß (IL-1ß) release in the hippocampal formation of DEREG mice. Moreover, we found that depletion of Foxp3-expressing cells induces a significant elevation of granulocytes, monocytes, and macrophages in the blood, which are associated with transient expression of the matrix metalloprotease-9. Similarly, we found that depletion of Foxp3-expressing cells in 5xFAD, a mouse model of Alzheimer's disease (AD), exhibits elevated activated caspase-1 and promotion of IL-1ß secretion and increased the level of amyloid-beta (Aß)1-42 and Aß plaque burden in the hippocampal formation that coincided with an acceleration of cognitive decline at a presymptomatic age in the 5xFAD mice. Thus, our study provides evidence supporting the idea that Foxp3 may have a causal influence on peripheral immune responses. This, in turn, can promote an innate immune response within the brain, potentially leading to anxiety- and depression-like behaviors or cognitive decline.

13.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034623

RESUMEN

Scope: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. Methods and results: We find that treatment with BDPP significantly decreased depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. We also find that BDPP treatment reversed microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. Conclusion: Our findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway might provide a new avenue for therapeutic intervention in stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.

14.
Elife ; 122023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417740

RESUMEN

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition in some patients with post-acute sequelae of SARS-CoV-2 (PASC). To evaluate neuropathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Brodmann area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD), and SARS-CoV-2-infected AD individuals compared to age- and gender-matched neurological cases. Here, we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2-infected AD individuals. Distribution of microglial changes reflected by the increase in Iba-1 reveals nodular morphological alterations in SARS-CoV-2-infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help in informing decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Barrera Hematoencefálica , Cognición , Progresión de la Enfermedad
15.
J Alzheimers Dis ; 91(2): 779-794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36502334

RESUMEN

BACKGROUND: The terrorist attacks on September 11, 2001, on the World Trade Center (WTC) led to intense fires and a massive dense cloud of toxic gases and suspended pulverized debris. In the subsequent years, following the attack and cleanup efforts, a cluster of chronic health conditions emerged among First Responders (FR) who were at Ground Zero for prolonged periods and were repeatedly exposed to high levels of WTC particulate matter (WTCPM). Among those are neurological complications which may increase the risk for the development of Alzheimer's disease (AD) later in life. OBJECTIVE: We hypothesize that WTCPM dust exposure affects the immune cross-talking between the periphery and central nervous systems that may induce brain permeability ultimately promoting AD-type phenotype. METHODS: 5XFAD and wild-type mice were intranasally administered with WTCPM dust collected at Ground Zero within 72 h after the attacks. Y-maze assay and novel object recognition behavioral tests were performed for working memory deficits and learning and recognition memory, respectively. Transcriptomic analysis in the blood and hippocampus was performed and confirmed by RT qPCR. RESULTS: Mice exposed to WTCPM dust exhibited a significant impairment in spatial and recognition short and long-term memory. Furthermore, the transcriptomic analysis in the hippocampal formation and blood revealed significant changes in genes related to immune-inflammatory responses, and blood-brain barrier disruption. CONCLUSION: These studies suggest a putative peripheral-brain immune inflammatory cross-talking that may potentiate cognitive decline, identifying for the first time key steps which may be therapeutically targetable in future studies in WTC FR.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ataques Terroristas del 11 de Septiembre , Ratones , Animales , Polvo/análisis , Enfermedad de Alzheimer/genética , Modelos Animales , Disfunción Cognitiva/genética
16.
Mol Neurobiol ; 60(7): 4004-4016, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010807

RESUMEN

Intronic G4C2 hexanucleotide repeat expansions (HRE) of C9orf72 are the most common cause of familial variants of frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). G4C2 HREs in C9orf72 undergo non-canonical repeat-associated translation, producing dipeptide repeat (DPR) proteins, with various deleterious impacts on cellular homeostasis. While five different DPRs are produced, poly(glycine-arginine) (GR) is amongst the most toxic and is the only DPR to accumulate in the associated clinically relevant anatomical locations of the brain. Previous work has demonstrated the profound effects of a poly (GR) model of C9orf72 FTD/ALS, including motor impairment, memory deficits, neurodegeneration, and neuroinflammation. Neuroinflammation is hypothesized to be a driving factor in the disease course; microglia activation is present prior to symptom onset and persists throughout the disease. Here, using an established mouse model of C9orf72 FTD/ALS, we investigate the contributions of the nod-like receptor pyrin-containing 3 (NLRP3) inflammasome in the pathogenesis of FTD/ALS. We find that inflammasome-mediated neuroinflammation is increased with microglial activation, cleavage of caspase-1, production of IL-1ß, and upregulation of Cxcl10 in the brain of C9orf72 FTD/ALS mice. Excitingly, we find that genetic ablation of Nlrp3 significantly improved survival, protected behavioral deficits, and prevented neurodegeneration suggesting a novel mechanism involving HRE-mediated induction of innate immunity. The findings provide experimental evidence of the integral role of HRE in inflammasome-mediated innate immunity in the C9orf72 variant of FTD/ALS pathogenesis and suggest the NLRP3 inflammasome as a therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Microglía/metabolismo , Inflamasomas , Proteína C9orf72/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedades Neuroinflamatorias , Expansión de las Repeticiones de ADN/genética , Dipéptidos
17.
Transl Psychiatry ; 12(1): 324, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945212

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that exhibits neurobehavioral deficits characterized by abnormalities in social interactions, deficits in communication as well as restricted interests, and repetitive behaviors. The basal ganglia is one of the brain regions implicated as dysfunctional in ASD. In particular, the defects in corticostriatal function have been reported to be involved in the pathogenesis of ASD. Surface deformation of the striatum in the brains of patients with ASD and their correlation with behavioral symptoms was reported in magnetic resonance imaging (MRI) studies. We demonstrated that prenatal valproic acid (VPA) exposure induced synaptic and molecular changes and decreased neuronal activity in the striatum. Using RNA sequencing (RNA-Seq), we analyzed transcriptome alterations in striatal tissues from 10-week-old prenatally VPA-exposed BALB/c male mice. Among the upregulated genes, Nurr1 was significantly upregulated in striatal tissues from prenatally VPA-exposed mice. Viral knockdown of Nurr1 by shRNA significantly rescued the reduction in dendritic spine density and the number of mature dendritic spines in the striatum and markedly improved social deficits in prenatally VPA-exposed mice. In addition, treatment with amodiaquine, which is a known ligand for Nurr1, mimicked the social deficits and synaptic abnormalities in saline-exposed mice as observed in prenatally VPA-exposed mice. Furthermore, PatDp+/- mice, a commonly used ASD genetic mouse model, also showed increased levels of Nurr1 in the striatum. Taken together, these results suggest that the increase in Nurr1 expression in the striatum is a mechanism related to the changes in synaptic deficits and behavioral phenotypes of the VPA-induced ASD mouse model.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Embarazo , Conducta Social , Transcriptoma , Ácido Valproico/efectos adversos
18.
bioRxiv ; 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36451886

RESUMEN

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD. Teaser: SARS-CoV-2 and Alzheimer's disease share similar neuroinflammatory processes, which may help explain neuro-PASC.

19.
Transl Neurodegener ; 11(1): 57, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575534

RESUMEN

BACKGROUND: Aducanumab (Adu), which is a human IgG1 monoclonal antibody that targets oligomer and fibril forms of beta-amyloid, has been reported to reduce amyloid pathology and improve impaired cognition after administration of a high dose (10 mg/kg) of the drug in Alzheimer's disease (AD) clinical trials. The purpose of this study was to investigate the effects of a lower dose of Adu (3 mg/kg) with enhanced delivery via focused ultrasound (FUS) in an AD mouse model. METHODS: The FUS with microbubbles opened the blood-brain barrier (BBB) of the hippocampus for the delivery of Adu. The combined therapy of FUS and Adu was performed three times in total and each treatment was performed biweekly. Y-maze test, Brdu labeling, and immunohistochemical experimental methods were employed in this study. In addition, RNA sequencing and ingenuity pathway analysis were employed to investigate gene expression profiles in the hippocampi of experimental animals. RESULTS: The FUS-mediated BBB opening markedly increased the delivery of Adu into the brain by approximately 8.1 times in the brains. The combined treatment induced significantly less cognitive decline and decreased the level of amyloid plaques in the hippocampi of the 5×FAD mice compared with Adu or FUS alone. Combined treatment with FUS and Adu activated phagocytic microglia and increased the number of astrocytes associated with amyloid plaques in the hippocampi of 5×FAD mice. Furthermore, RNA sequencing identified that 4 enriched canonical pathways including phagosome formation, neuroinflammation signaling, CREB signaling and reelin signaling were altered in the hippocami of 5×FAD mice receiving the combined treatment. CONCLUSION: In conclusion, the enhanced delivery of a low dose of Adu (3 mg/kg) via FUS decreases amyloid deposits and attenuates cognitive function deficits. FUS-mediated BBB opening increases adult hippocampal neurogenesis as well as drug delivery. We present an AD treatment strategy through the synergistic effect of the combined therapy of FUS and Adu.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Placa Amiloide/tratamiento farmacológico , Ultrasonografía
20.
Biomolecules ; 11(2)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669660

RESUMEN

Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.


Asunto(s)
Trampas Extracelulares , Elastasa de Leucocito/metabolismo , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno , Plata/química , Cloroquina/farmacología , Cromatina/metabolismo , Citrulina/química , ADN/química , Activación Enzimática , Histonas/química , Histonas/metabolismo , Humanos , Lisosomas/metabolismo , Neutrófilos/metabolismo , Reacción en Cadena de la Polimerasa , Transducción de Señal , Acetato de Tetradecanoilforbol/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA