Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genome Biol Evol ; 13(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34665222

RESUMEN

Members of eustigmatophyte algae, especially Nannochloropsis and Microchloropsis, have been tapped for biofuel production owing to their exceptionally high lipid content. Although extensive genomic, transcriptomic, and synthetic biology toolkits have been made available for Nannochloropsis and Microchloropsis, very little is known about other eustigmatophytes. Here we present three near-chromosomal and gapless genome assemblies of Monodopsis strains C73 and C141 (60 Mb) and Vischeria strain C74 (106 Mb), which are the sister groups to Nannochloropsis and Microchloropsis in the order Eustigmatales. These genomes contain unusually high percentages of simple repeats, ranging from 12% to 21% of the total assembly size. Unlike Nannochloropsis and Microchloropsis, long interspersed nuclear element repeats are abundant in Monodopsis and Vischeria and might constitute the centromeric regions. We found that both mevalonate and nonmevalonate pathways for terpenoid biosynthesis are present in Monodopsis and Vischeria, which is different from Nannochloropsis and Microchloropsis that have only the latter. Our analysis further revealed extensive spliced leader trans-splicing in Monodopsis and Vischeria at 36-61% of genes. Altogether, the high-quality genomes of Monodopsis and Vischeria not only serve as the much-needed outgroups to advance Nannochloropsis and Microchloropsis research, but also shed new light on the biology and evolution of eustigmatophyte algae.


Asunto(s)
Estramenopilos , Genoma , Genómica , Estramenopilos/genética , Transcriptoma
2.
Nat Commun ; 12(1): 6348, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732722

RESUMEN

To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identify several key differences. Notably, Isoetes may have recruited the lesser-known 'bacterial-type' PEPC, along with the 'plant-type' exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.


Asunto(s)
Metabolismo Ácido de las Crasuláceas/fisiología , Fotosíntesis/fisiología , Tracheophyta/genética , Tracheophyta/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo Ácido de las Crasuláceas/genética , Evolución Molecular , Expresión Génica , Genoma , Tamaño del Genoma , Lignina/biosíntesis , Magnoliopsida , Plantas/metabolismo , Taiwán , Agua , Secuenciación Completa del Genoma
3.
PLoS Genet ; 3(7): e107, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17616977

RESUMEN

We describe here the Drosophila gene hydra that appears to have originated de novo in the melanogaster subgroup and subsequently evolved in both structure and expression level in Drosophila melanogaster and its sibling species. D. melanogaster hydra encodes a predicted protein of approximately 300 amino acids with no apparent similarity to any previously known proteins. The syntenic region flanking hydra on both sides is found in both D. ananassae and D. pseudoobscura, but hydra is found only in melanogaster subgroup species, suggesting that it originated less than approximately 13 million y ago. Exon 1 of hydra has undergone recurrent duplications, leading to the formation of nine tandem alternative exon 1s in D. melanogaster. Seven of these alternative exons are flanked on their 3' side by the transposon DINE-1 (Drosophila interspersed element-1). We demonstrate that at least four of the nine duplicated exon 1s can function as alternative transcription start sites. The entire hydra locus has also duplicated in D. simulans and D. sechellia. D. melanogaster hydra is expressed most intensely in the proximal testis, suggesting a role in late-stage spermatogenesis. The coding region of hydra has a relatively high Ka/Ks ratio between species, but the ratio is less than 1 in all comparisons, suggesting that hydra is subject to functional constraint. Analysis of sequence polymorphism and divergence of hydra shows that it has evolved under positive selection in the lineage leading to D. melanogaster. The dramatic structural changes surrounding the first exons do not affect the tissue specificity of gene expression: hydra is expressed predominantly in the testes in D. melanogaster, D. simulans, and D. yakuba. However, we have found that expression level changed dramatically (approximately >20-fold) between D. melanogaster and D. simulans. While hydra initially evolved in the absence of nearby transposable element insertions, we suggest that the subsequent accumulation of repetitive sequences in the hydra region may have contributed to structural and expression-level evolution by inducing rearrangements and causing local heterochromatinization. Our analysis further shows that recurrent evolution of both gene structure and expression level may be characteristics of newly evolved genes. We also suggest that late-stage spermatogenesis is the functional target for newly evolved and rapidly evolving male-specific genes.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Genes de Insecto , Testículo/metabolismo , Empalme Alternativo , Animales , Secuencia de Bases , ADN/genética , Drosophila/clasificación , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/clasificación , Drosophila melanogaster/metabolismo , Exones , Expresión Génica , Masculino , Filogenia , Especificidad de la Especie , Espermatogénesis/genética
4.
Genetics ; 173(1): 189-96, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16387876

RESUMEN

DINE-1 (Drosophila interspersed element) is the most abundant repetitive sequence in the Drosophila genome derived from transposable elements. It comprises >1% of the Drosophila melanogaster genome (DMG) and is believed to be a relic from an ancient transpositional burst that occurred approximately 5-10 MYA. We performed a genomewide comparison of the abundance, sequence variation, and chromosomal distribution of DINE-1 in D. melanogaster and D. yakuba. Unlike the highly diverged copies in the DMG (pairwise distance approximately 15%), DINE-1's in the Drosophila yakuba genome (DYG) have diverged by only 3.4%. Moreover, the chromosomal distribution of DINE-1 in the two species is very different, with a significant number of euchromatic insertions found only in D. yakuba. We propose that these different patterns are caused by a second transpositional burst of DINE-1's in the D. yakuba genome approximately 1.5 MYA. On the basis of the sequence of these recently transposed copies, we conclude that DINE-1 is likely to be a family of nonautomomous DNA transposons. Analysis of the chromosomal distribution of two age groups of DINE-1's in D. yakuba indicates that (1) there is a negative correlation between recombination rates and the density of DINE-1's and (2) younger copies are more evenly distributed in the chromosome arms, while older copies are mostly located near the centromere regions. Our results fit the predictions of a selection-transposition balance model. Our data on whole-genome comparison of a highly abundant TE among Drosophila sibling species demonstrate the unexpectedly dynamic nature of TE activity in different host genomes.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila/genética , Evolución Molecular , Genoma de los Insectos/genética , Animales , Cromosomas/genética , Drosophila/clasificación , Drosophila melanogaster/genética , Dosificación de Gen/genética , Genómica , Factores de Tiempo
5.
Genome Biol ; 9(2): R39, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18291035

RESUMEN

BACKGROUND: Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA-mediated transposable elements (TEs) derived from autonomous TEs. Unlike in many plants or animals, MITEs and other types of DNA-mediated TEs were previously thought to be either rare or absent in Drosophila. Most other TE families in Drosophila exist at low or intermediate copy number (around < 100 per genome). RESULTS: We present evidence here that the dispersed repeat Drosophila interspersed element 1 (DINE-1; also named INE-1 and DNAREP1) is a highly abundant DNA-mediated TE containing inverted repeats found in all 12 sequenced Drosophila genomes. All DINE-1s share a similar sequence structure, but are more homogeneous within species than they are among species. The inferred phylogenetic relationship of the DINE-1 consensus sequence from each species is generally consistent with the known species phylogeny, suggesting vertical transmission as the major mechanism for DINE-1 propagation. Exceptions observed in D. willistoni and D. ananassae could be due to either horizontal transfer or reactivation of ancestral copies. Our analysis of pairwise percentage identity of DINE-1 copies within species suggests that the transpositional activity of DINE-1 is extremely dynamic, with some lineages showing evidence for recent transpositional bursts and other lineages appearing to have silenced their DINE-1s for long periods of time. We also find that all species have many DINE-1 insertions in introns and adjacent to protein-coding genes. Finally, we discuss our results in light of a recent proposal that DINE-1s belong to the Helitron family of TEs. CONCLUSION: We find that all 12 Drosophila species with whole-genome sequence contain the high copy element DINE-1. Although all DINE-1s share a similar structure, species-specific variation in the distribution of average pairwise divergence suggests that DINE-1 has gone through multiple independent cycles of activation and suppression. DINE-1 also has had a significant impact on gene structure evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila/genética , Genoma de los Insectos , Mutagénesis Insercional , Animales , Secuencia de Bases , Drosophila/clasificación , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
6.
Genet Res ; 81(1): 1-6, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12693677

RESUMEN

We have found that constant selection against mutations can cause cyclical dynamics in a population with facultative selfing. When this happens, the distribution of the number of deleterious mutations per genotype fluctuates with the period approximately 1/sHe generations, where sHe is the coefficient of selection against a heterozygous mutation. The amplitude of oscillations of the mean population fitness often exceeds an order of magnitude. Cyclical dynamics can occur under intermediate selfing rates if selection against heterozygous mutations is weak and selection against homozygous mutations is much stronger. Cycling is possible without epistasis or with diminishing-returns epistasis, but not with synergistic epistasis. Under multiplicative selection, cycling might happen if the haploid mutation rate exceeds 1.9 in the case of selfing of haploids, and if this diploid mutation rate exceeds 4.5 in the case of selfing of diploids. We propose a heuristic explanation for cycling under facultative selfing and discuss its possible relevance.


Asunto(s)
Diploidia , Haploidia , Mutación , Modelos Genéticos
7.
Mol Biol Evol ; 20(5): 800-4, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12679533

RESUMEN

The stable coexistence of transposable elements (TEs) with their host genome over long periods of time suggests TEs have to impose some deleterious effect upon their host fitness. Three mechanisms have been proposed to account for the deleterious effect caused by TEs: host gene interruptions by TE insertions, chromosomal rearrangements by TE-induced ectopic recombination, and costly TE expression. However, the relative importance of these mechanisms remains controversial. Here, we test specifically if TE expression accounts for the host fitness cost imposed by TE insertions. In the retrotransposon Doc, expression requires binding of the host RNA polymerase to the internal promoter. If expression of Doc elements is deleterious to their host, Doc copies with promoters would be more strongly selected against and would persist in the population for shorter periods of time compared with Docs lacking promoters. We tested this prediction using sequence-specific amplified polymorphism (SSAP) analyses. We compared the populations of these two types of Doc elements in two sets of lines of Drosophila melanogaster: selection-free isogenic lines accumulating new Doc insertions and isogenized isofemale lines sampled from a natural population. We found that (1) there is no difference in the proportion of promoter-bearing and promoter-lacking copies between sets of lines, and (2) the site occupancy distribution of promoter-bearing copies does not skew toward lower frequency compared with that of promoter-lacking copies. Thus, selection against promoter-bearing copies does not appear to be stronger than that of promoter-lacking copies. Our results show that expression is not playing a major role in stabilizing Doc copy numbers.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Selección Genética , Proteínas Virales/genética , Animales , Secuencia de Bases , California , Mapeo Cromosómico , Cartilla de ADN , Electroforesis , Datos de Secuencia Molecular , Polimorfismo Genético/genética , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA