Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(39): 14592-14599, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37683102

RESUMEN

Due to the comparable stability between the perfect-base pair and the wobble-base pair, a precise differentiation of the wobble-type allele has remained a challenge, often leading to false results. Herein, we proposed a ligase chain reaction (LCR)-based ratiometric electrochemical DNA sensor, namely, R-eLCR, for a precise typing of the wobble-type allele, in which the traditionally recognized "negative" signal of wobble-base pair-mediated amplification was fully utilized as a "positive" one and a ratiometric readout mode was employed to ameliorated the underlying potential external influence and improved its detection accuracy in the typing of the wobble-type allele. The results showed that the ratio between current of methylene blue (IMB) and current of ferrocene (IFc) was partitioned in three regions and three types of wobble-type allele were thus precisely differentiated (AA homozygote: IMB/IFc > 2; GG homozygote: IMB/IFc < 1; GA heterozygote: 1 < IMB/IFc < 2); the proposed R-eLCR successfully discriminated the three types of CYP2C19*2 allele in nine cases of human whole blood samples, which was consistent with those of the sequencing method. These results evidence that the proposed R-eLCR can serve as an accurate and robust alternative for the identification of wobble-type allele, which lays a solid foundation and holds great potential for precision medicine.


Asunto(s)
Técnicas Biosensibles , Reacción en Cadena de la Ligasa , Humanos , Alelos , Genotipo , Citocromo P-450 CYP2C19 , Técnicas Electroquímicas , Oro , Límite de Detección
2.
Anal Chem ; 95(12): 5331-5339, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926822

RESUMEN

As an enzyme-free exponential nucleic acid amplification method, the click chemistry-mediated ligation chain reaction (ccLCR) has shown great prospects in the molecular diagnosis. However, the current optics-based ccLCR is challenged by remarkable nonspecific amplification, severely hindering its future application. This study demonstrated that the severe nonspecific amplification was generated probably due to high random collision in the high DNA probe concentration (µM level). To solve this hurdle, a nucleic acid template-dominated ccLCR was constructed using nM-level DNA probes and read on an electrochemical platform (cc-eLCR). Under the optimal conditions, the proposed cc-eLCR detected a low-level nucleic acid target (1 fM) with a single-base resolution. Furthermore, this assay was applied to detect the target of interest in cell extracts with a satisfactory result. The proposed cc-eLCR offers huge possibility for click chemistry-mediated enzyme-free exponential nucleic acid amplification in the application of medical diagnosis and biomedical research.


Asunto(s)
Técnicas Biosensibles , ARN , Química Clic/métodos , Técnicas Biosensibles/métodos , ADN/química , Sondas de ADN/genética , Sondas de ADN/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Hibridación de Ácido Nucleico
3.
Anal Chem ; 94(31): 10921-10929, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35904339

RESUMEN

Thanks to its preparatory ease, close affinity, and low cost, the aptasensor can serve as a promising substitute for antibody-dependent biosensors. However, the available aptasensors are mostly subject to a single-mode readout and the interference of unbound aptamers in solution and non-target-induced transition events. Herein, we proposed a multimodal aptasensor for multimode detection of ochratoxin A (OTA) with cross-validation using the 3'-6-carboxyfluorescein (FAM)-enhanced exonuclease I (Exo I) tool and magnetic microbead carrier. Specifically, the 3'-FAM-labeled aptamer/biotinylated-cDNA hybrids were immobilized onto streptavidin-magnetic microbeads via streptavidin-biotin interaction. With the presence of OTA, an antiparallel G-quadruplex conformation was formed, protecting the 3'-FAM labels from Exo I digestion, and then anti-FAM-horseradish peroxidase (HRP) was bound via specific antigen-antibody affinity; for the aptamers without the protection of OTA, the distal ssDNA was hydrolyzed from 3' → 5', releasing 3'-FAM labels to the solution. Therefore, the OTA was detected by analyzing the "signal-off" fluorescence of the supernatant and two "signal-on" signals in electrochemistry and colorimetry through the detection of the coating magnetic microbeads in HRP's substrate. The results showed that the 3'-FAM labels increased the activity of Exo I, producing a low background due to a more thorough digestion of unbound aptamers. The proposed multimodal aptasensor successfully detected the OTA in actual samples. This work first provides a novel strategy for the development of aptasensors with Exo I and 3'-FAM labels, broadening the application of aptamer in the multimode detection of small molecules.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ocratoxinas , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Exodesoxirribonucleasas , Límite de Detección , Fenómenos Magnéticos , Microesferas , Ocratoxinas/análisis , Estreptavidina/química
4.
Anal Chem ; 93(2): 911-919, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33284015

RESUMEN

Accurate and sensitive detection of single-base mutations in RNAs is of great value in basic studies of life science and medical diagnostics. However, the current available RNA detection methods are challenged by heterogeneous clinical samples in which trace RNA mutants usually existed in a large pool of normal wild sequences. Thus, there is still great need for developing the highly sensitive and highly specific methods in detecting single-base mutations of RNAs in heterogeneous clinical samples. In the present study, a new chimeric DNA probe-aided ligase chain reaction-based electrochemical method (cmDNA-eLCR) was developed for RNA mutation detection through the BSA-based carrier platform and the horseradish peroxidase-hydrogen peroxide-tetramethylbenzidine (HRP-H2O2-TMB) system. The denaturing polyacrylamide gel electrophoresis and a fluorophore-labeled probe was ingeniously designed to demonstrate the advantage of cmDNA in ligation to normal DNA templated by RNA with the catalysis of T4 RNA ligase 2 as well as its higher selectivity than DNA ligase system. Finally, the proposed cmDNA-eLCR, compared with the traditional eLCR, showed excellent performance in discriminating single base-mismatched sequences, where the signal response for mismatched targets at a high concentration could overlap completely with that for the blank control. Besides, this cmDNA-eLCR assay had a wide linear range crossing six orders of magnitude from 1.0 × 10-15 to1.0 × 10-10 M with a limit of detection as low as 0.6 fM. Furthermore, this assay was applied to detect RNA in real sample with a satisfactory result, thereby demonstrating its great potential in diagnosis of RNA-related diseases.


Asunto(s)
Técnicas Biosensibles , Sondas de ADN/química , Técnicas Electroquímicas , Reacción en Cadena de la Ligasa , ARN/genética , Humanos
5.
J Orthop Sci ; 26(3): 466-472, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32402505

RESUMEN

BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor, particularly among children and adolescents, and the prognosis of osteosarcoma patients remains poor. The NADPH oxidase 2 (NOX2) has been found over-expressed in several human cancers, and closely associated with poor prognosis. Meanwhile the role of NOX2 in osteosarcoma patients has not been reported. This study aimed to investigate the clinicopathological and prognostic significance of NOX2 in osteosarcoma patients. METHODS: Immunohistochemistry (IHC), western blot (WB) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect the expression of NOX2 in 55 primary osteosarcoma specimens and in 20 non-neoplastic bone tissue specimens. The correlations between NOX2 expression and clinicopathological parameters were analysed by using the χ2 test or Fisher's exact test. Disease free survival and overall survival of osteosarcoma patients were assessed by using the Kaplan-Meier method and Cox proportional hazards model. RESULTS: NOX2 was over-expressed significantly in osteosarcoma compared with that in non-neoplastic bone tissue, and correlated with progression free survival (P < 0.001) and overall survival (P < 0.001). The over-expression of NOX2 was associated with tumor size (P < 0.001), tumor location (P < 0.001). The Cox analysed shown that the over-expression of NOX2 was predicted to be worse PFS (hazard ratio (HR) = 4.10, P = 0.004) and OS (hazard ratio (HR) = 3.50, P = 0.010) time in osteosarcoma patients. CONCLUSIONS: The results of our study suggest that the over-expression of NOX2 is related to adverse clinical outcome, and can be viewed as an independent prognostic marker in osteosarcoma. Further research is required to verify the predictive value of NOX2 in osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Niño , Supervivencia sin Enfermedad , Humanos , Estimación de Kaplan-Meier , NADPH Oxidasa 2/genética , Osteosarcoma/genética , Pronóstico , Modelos de Riesgos Proporcionales
6.
ACS Sens ; 6(3): 1348-1356, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33657808

RESUMEN

Herein, an interface-based DNA nanosieve that has the ability to differentiate ssDNA from dsDNA has been demonstrated for the first time. The DNA nanosieve could be readily built through thiol-DNA's self-assembly on the gold electrode surface, and its cavity size was tunable by varying the concentration of thiol-DNAs. Electrochemical chronocoulometry using [Ru(NH3)6]3+ as redox revealed that the average probe-to-probe separation in the 1 µM thiol-DNA-modified gold electrode was 10.6 ± 0.3 nm so that the rigid dsDNA with a length of ∼17 nm could not permeate the nanosieve, whereas the randomly coiled ssDNA could enter it due to its high flexibility, which has been demonstrated by square wave voltammetry and methylene blue labels through an upside-down hybridization format. After combining the transiently binding characteristic of a short DNA duplex and introducing a regenerative probe (the counterpart of ssDNA), a highly reproducible nanosieve-based E-DNA model was obtained with a relative standard deviation (RSD) as low as 2.7% over seven cycles. Finally, we built a regenerative nanosieve-based E-DNA sensor using a ligation cycle reaction as an ssDNA amplification strategy and realized one-sensor-based continuous measurement to multiple clinical samples with excellent allele-typing performance. This work holds great potential in low-cost and high-throughput analysis between biosensors and biochips and also opens up a new avenue in nucleic acid flexibility-based DNA materials for future applications in DNA origami and molecular logic gates.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Alelos , ADN/genética , Hibridación de Ácido Nucleico
7.
Talanta ; 216: 120966, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32456905

RESUMEN

Challenged by the detection of trace amounts of mutants and disturbance from endogenous substances in clinical samples, herein, we present a novel electrochemical biosensor based on ligase chain reaction (eLCR) via the thermostable ligase with high mutation recognizing ability. The lengthened double-stranded DNAs exponentially generated via LCR were uniformly distributed on a bovine serum albumin-modified gold electrode, in which the phosphate buffer was tactfully added to remove adsorbed uninterested-probes, and thereafter the amperometry current was collected for the specific binding of streptavidin-poly-HRP and subsequent catalysis in the 3, 3', 5, 5'-tetramethylbenzidine substrate that contained hydrogen peroxide. It found that, under optimized conditions, the proposed biosensor exhibited a high selectivity of mutant targets from the 104-fold excess of co-existent wild targets within a detection limit of 0.5 fM. Impressively, without the involvement of pre-PCR, the homozygous mutants were specifically distinguished from the wild genotype of CYP2C19*2 allele in human whole blood samples. Therefore, the proposed eLCR, due to its advantages in simple primer design, operational ease and ease of miniaturization, has demonstrated its considerable potential for point-of-care testing in the diagnosis of point mutation-related diseases and personalized medicine.


Asunto(s)
Técnicas Biosensibles , Citocromo P-450 CYP2C19/genética , Técnicas Electroquímicas , Reacción en Cadena de la Ligasa , Citocromo P-450 CYP2C19/sangre , Humanos , Mutación Puntual
8.
Anal Chim Acta ; 1100: 225-231, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987145

RESUMEN

Sepsis has always been a severe clinical problem in critical care medicine due to its rather high mortality and poor prognosis. The current study reported for the first time a practical immunosensor for fibronectin (FN) detection in human serum by electrochemistry. A simple but robust sandwich-type strategy was employed without any complex design or material modifications, which exhibited a linear calibration plot over the 15.625-500 ng/mL concentration range and a detection limit of 15 ng/mL. The results showed that the proposed strategy displayed an excellent selectivity against other non-target substances in human serum, a higher accuracy and a better stability when compared with the traditional enzyme-linked immunosorbent assay (ELISA) in detecting the same or mixed serum from 21 healthy subjects. Furthermore, the proposed electrochemical immunosensor successfully monitored the level of serum FN at various time points in five septic patients during the treatment. These findings demonstrate that the proposed strategy is highly sensitive and accurate in monitoring sepsis progress and has significant clinical improvements over the ELISA methodology, signifying a great potential of a commercial kit.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ensayo de Inmunoadsorción Enzimática , Fibronectinas/sangre , Sepsis/sangre , Humanos , Sepsis/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA