Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315835

RESUMEN

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas , Acilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Transferasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Blood ; 143(13): 1231-1241, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38145560

RESUMEN

ABSTRACT: Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células T , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfocitos T , Enfermedad Crónica , Linfoma de Células T/tratamiento farmacológico , Antígenos CD19
3.
Small ; : e2400987, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295489

RESUMEN

2D Fe-chalcogenides emerge with rich structures, magnetisms, and superconductivities, which spark the growing research interests in the torturous transition mechanism and tunable properties for their potential applications in nanoelectronics. Uniaxial strain can produce a lattice distortion to study symmetry breaking induced exotic properties in 2D magnets. Herein, the anomalous Raman spectrum of 2D tetragonal (t-) and hexagonal (h-) FeTe is systematically investigated via uniaxial strain engineering strategy. It is found that both t- and h-FeTe keep the structural stability under different uniaxial tensile or compressive strain up to ± 0.4%. Intriguingly, the lattice vibrations along both in-plane and out-of-plane directions exceptionally harden (softened) under tensile (compressive) strain, distinguished from the behaviors of many conventional 2D systems. Further, the difference in thickness-dependent strain effect can be well explained by their structural discrepancy between two polymorphs of FeTe. These results can supply a unique platform to explore the vibrational properties of many novel 2D materials.

4.
J Hum Genet ; 69(8): 381-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38730005

RESUMEN

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.


Asunto(s)
ADN Mitocondrial , Discapacidades del Desarrollo , Enfermedades Mitocondriales , Humanos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Mutación , Mitocondrias/genética , Mitocondrias/metabolismo , Masculino , Femenino , Potencial de la Membrana Mitocondrial/genética , Fosforilación Oxidativa , Preescolar , Especies Reactivas de Oxígeno/metabolismo
5.
Cancer Cell Int ; 24(1): 93, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431606

RESUMEN

BACKGROUND: Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways. METHODS: Immunohistochemistry and lung cancer tissue microarray were used to verify the expression of RGS20 between NSCLC patients. CCK8 and cell cloning were conducted to determine the proliferation ability of H1299 and Anip973 cells in vitro. Furthermore, Transcriptome sequencing was performed to show enrichment genes and pathways. Immunofluorescence was used to detect the translocation changes of YAP to nucleus. Western blotting demonstrated different expressions of autophagy and the Hippo-PKA signal pathway. In vitro and in vivo experiments verified whether overexpression of RGS20 affect the proliferation and autophagy of NSCLC through regulating the Hippo pathway. RESULTS: The higher RGS20 expression was found to be significantly correlated with a poorer five-year survival rate. Further, RGS20 accelerated cell proliferation by increasing autophagy. Transcriptomic sequencing suggested the involvement of the Hippo signaling pathway in the action of RGS20 in NSCLC. RGS20 activation reduced YAP phosphorylation and facilitated its nuclear translocation. Remarkably, inhibiting Hippo signaling with GA-017 promoted cell proliferation and activated autophagy in RGS20 knock-down cells. However, forskolin, a GPCR activator, increased YAP phosphorylation and reversed the promoting effect of RGS20 in RGS20-overexpressing cells. Lastly, in vivo experiments further confirmed role of RGS20 in aggravating tumorigenicity, as its overexpression increased NSCLC cell proliferation. CONCLUSION: Our findings indicate that RGS20 drives NSCLC cell proliferation by triggering autophagy via the inhibition of PKA-Hippo signaling. These insights support the role of RGS20 as a promising novel molecular marker and a target for future targeted therapies in lung cancer treatment.

6.
Pharmacol Res ; 208: 107370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181344

RESUMEN

Ferroptosis, an emerging paradigm of programmed cellular necrosis posited in recent years, manifests across a spectrum of maladies with profound implications for human well-being. Numerous investigations substantiate that modulating ferroptosis, whether through inhibition or augmentation, plays a pivotal role in the etiology and control of numerous age-related afflictions, encompassing neurological, circulatory, respiratory, and other disorders. This paper not only summarizes the regulatory mechanisms of ferroptosis, but also discusses the impact of ferroptosis on the biological processes of aging and its role in age-related diseases. Furthermore, it scrutinizes recent therapeutic strides in addressing aging-related conditions through the modulation of ferroptosis. The paper consolidates the existing knowledge on potential applications of ferroptosis-related pharmacotherapies and envisages the translational prospects of ferroptosis-targeted interventions in clinical paradigms.


Asunto(s)
Envejecimiento , Ferroptosis , Ferroptosis/efectos de los fármacos , Humanos , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales
7.
J Neurooncol ; 170(1): 161-171, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117967

RESUMEN

PURPOSE: This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS: Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS: Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-ß signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION: Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.


Asunto(s)
Proteína Morfogenética Ósea 2 , Neoplasias Encefálicas , Movimiento Celular , Glioma , Isocitrato Deshidrogenasa , Mutación , Invasividad Neoplásica , Neovascularización Patológica , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Movimiento Celular/efectos de los fármacos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Invasividad Neoplásica/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Smad/metabolismo , Proteínas Smad/genética , Angiogénesis
8.
Environ Sci Technol ; 58(8): 3665-3676, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38358856

RESUMEN

Toxicological studies have indicated that exposure to chlorinated paraffins (CPs) may disrupt intracellular glucose and energy metabolism. However, limited information exists regarding the impact of human CP exposure on glucose homeostasis and its potential association with an increased risk of developing gestational diabetes mellitus (GDM). Here, we conducted a prospective study with a nested case-control design to evaluate the link between short- and medium-chain CP (SCCPs and MCCPs) exposures during pregnancy and the risk of GDM. Serum samples from 102 GDM-diagnosed pregnant women and 204 healthy controls were collected in Hangzhou, Eastern China. The median (interquartile range, IQR) concentration of SCCPs was 161 (127, 236) ng/mL in the GDM group compared to 127 (96.9, 176) ng/mL in the non-GDM group (p < 0.01). For MCCPs, the GDM group had a median concentration of 144 (117, 174) ng/mL, while the control group was 114 (78.1, 162) ng/mL (p < 0.01). Compared to the lowest quartile as the reference, the adjusted odds ratios (ORs) of GDM were 7.07 (95% CI: 2.87, 17.40) and 3.34 (95% CI: 1.48, 7.53) in the highest quartile of ∑SCCP and ∑MCCP levels, respectively, with MCCPs demonstrating an inverted U-shaped association with GDM. Weighted quantile sum regression evaluated the joint effects of all CPs on GDM and glucose homeostasis. Among all CP congeners, C13H23Cl5 and C10H16Cl6 were the crucial variables driving the positive association with the GDM risk. Our results demonstrated a significant positive association between CP concentration in maternal serum and GDM risk, and exposure to SCCPs and MCCPs may disturb maternal glucose homeostasis. These findings contribute to a better understanding of the health risks of CP exposure and the role of environmental contaminants in the pathogenesis of GDM.


Asunto(s)
Diabetes Gestacional , Hidrocarburos Clorados , Femenino , Embarazo , Humanos , Diabetes Gestacional/inducido químicamente , Diabetes Gestacional/epidemiología , Hidrocarburos Clorados/análisis , Parafina/análisis , Estudios de Casos y Controles , Estudios Prospectivos , Monitoreo del Ambiente/métodos , China/epidemiología , Glucosa
9.
Eur J Nutr ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294335

RESUMEN

PURPOSE: The objective of this study is to investigate the impact of ferroptosis on depression and elucidate the molecular mechanism underlying melatonin's inhibitory effect on ferroptosis in the treatment of depression. METHODS: In this study, a depression-like behavior model was induced in mice using LPS, and the effect of melatonin on depression-like behavior was evaluated through behavioral experiments (such as forced swimming test (FST) and sucrose preference test (SPT)). Additionally, molecular biological techniques (including real-time fluorescence quantitative PCR, Western blotting, immunoprecipitation) were employed to detect the expression levels and interactions of METTL3, SIRT6 and ferroptosis-related genes in mouse brain tissue. Furthermore, both in vitro and in vivo experiments were conducted to verify the regulatory effect of melatonin on Nrf2/HO-1 pathway and explore its potential molecular mechanism for regulating ferroptosis. RESULTS: Melatonin was found to significantly ameliorate depression-like behavior in mice, as evidenced by reduced immobility time in the forced swimming test and increased sucrose intake in the sucrose preference test. Subsequent investigations revealed that melatonin modulated SIRT6 stability through METTL3-mediated ubiquitination of SIRT6, leading to its degradation. As a deacetylase, SIRT6 plays a pivotal role in cellular metabolism regulation and antioxidative stress response. This study elucidated potential signaling pathways involving Nrf2/HO-1 through which SIRT6 may exert its effects. CONCLUSION: The findings suggest that melatonin can improve depressive behavior by suppressing ferroptosis and protecting neurons through its antioxidant properties. Additionally, targeting the Nrf2/HO-1 pathway via METTL3 and NEDD4 regulation may be a potential therapeutic approach for depression.

10.
J Biochem Mol Toxicol ; 38(1): e23550, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37815028

RESUMEN

Uric acid, an oxidation end-product of purine metabolism, is reportedly to be a risk factor for kidney injury. However, its underlying mechanism is still a mystery. This study aimed to reveal the detailed roles of uric acid in inducing kidney injury and the possible mechanisms. Injection of rats with uric acid significantly increased tubular injury score, and levels of blood urea nitrogen, serum creatinine, and urine kidney injury molecule-1. Uric acid increased the expression of collagen I, alpha-smooth muscle actin, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. Kyoto Encyclopedia of Genes and Genomes analysis result showed the IL-17 signaling pathway as the most significantly enriched pathway involved in hyperuricemia-related kidney injury. Long-term injection of uric acid induced significant production of IL-17 and recruitment of Th17 cells. Treating rats with the anti-IL-17 mAb attenuated uric acid-induced kidney injury, accompanied by the inactivation of nuclear factor-κB (NF-κB). In conclusion, uric acid was confirmed to be a risk factor for kidney injury via inducing IL-17 expression. Neutralization of IL-17 using the specific mAb relieved uric acid-induced kidney injury via inhibition of NF-κB signaling.


Asunto(s)
FN-kappa B , Ácido Úrico , Ratas , Animales , Ácido Úrico/metabolismo , FN-kappa B/metabolismo , Interleucina-17 , Riñón/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA