Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(29): e2208217, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37013462

RESUMEN

The scarcity of narrow bandgap donor polymers matched with perylene diimides (PDI)-based nonfullerene acceptors (NFAs) hinders improvement of the power conversion efficiency (PCE) value of organic solar cells (OSCs). Here, it is reported that a narrow bandgap donor polymer PDX, the chlorinated derivative of the famous polymer donor PTB7-Th, blended with PDI-based NFA boosts the PCE value exceeding 10%. The electroluminescent quantum efficiency of PDX-based OSCs is two orders of magnitude higher than that of PTB7-Th-based OSCs;therefore, the nonradiative energy loss is 0.103 eV lower. This is the highest PCE value for OSCs with the lowest energy loss using the blend of PTB7-Th derivatives and PDI-based NFAs as the active layer. Besides, PDX-based devices showed larger phase separation, faster charge mobilities, higher exciton dissociation probability, suppressed charge recombination, elevated charge transfer state, and decreased energetic disorder compared with the PTB7-Th-based OSCs. All these factors contribute to the simultaneously improved short circuit current density, open circuit voltage, and fill factor, thus significantly improving PCE. These results prove that chlorinated conjugated side thienyl groups can efficiently suppress the non-radiative energy loss and highlight the importance of fine-modifying or developing novel narrow bandgap polymers to further elevate the PCE value of PDI-based OSCs.

2.
Small ; 18(26): e2201589, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35638221

RESUMEN

Developing intrinsically stretchable organic solar cells (OSCs) with excellent mechanical robustness and long-term operation stability is highly demanded for practical applications. Here, the representative PM6/Y6 active layer film, crosslinked by a photo-crosslinkable small molecule 2,6-bis(4-azidobenzylidene)cyclohexanone (BAC) containing azide groups, exhibits a significantly enhanced stretchability of 18% and toughness of 6.94 MJ m-3 , compared to non-crosslinked film (stretchability of 4.5% and toughness of 0.75 MJ m-3 ). It is found that controlling the crosslinking density, including crosslinker concentration and crosslinking time, plays a vital impact on the stretchability and mechanical toughness of active layer film. The resulting intrinsically stretchable OSCs achieve a high power conversion efficiency (PCE) of 13.4% and retain 80% of its performance even under the large strain of 20%. To date, this is the highest PCE for intrinsically stretchable OSCs based on small molecular acceptors. Moreover, crosslinking of active layer film suppresses the crystallization of PM6 polymer chains and avoids the excessive aggregation of small molecular acceptors under thermal heating or light illumination, leading to a stabilized film morphology and significantly improved device stability. Overall, these results provide a universal strategy to simultaneously enhance the mechanical properties and stability of OSCs without sacrificing their photovoltaic performance.

3.
ACS Appl Mater Interfaces ; 16(17): 22294-22302, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634660

RESUMEN

Flexible and stretchable organic solar cells (OSCs) show great promise in wearable and stretchable electronic applications. However, current high-performance OSCs consisting of polymer donors (PDs) and small-molecule acceptors (SMAs) face significant challenges in achieving both high power conversion efficiency (PCE) and excellent stretch-ability. In this study, we synthesized a new polymerized-small-molecule acceptor (P-SMA) PY-SiO featuring siloxane-terminated side chains and compared its photovoltaic and mechanical performance to that of the reference PY-EH with ethylhexyl-terminated side chains. We found that the incorporation of siloxane-terminated side chains in PY-SiO enhanced the molecular aggregation and charge transport, leading to an optimized film morphology. The resultant of all-polymer solar cells (all-PSCs) based on PBDB-T/PY-SiO showed a higher PCE of 12.04% than the PY-EH-based one (10.85%). Furthermore, the siloxane-terminated side chains also increased the interchain distance and provided a larger free volume for chain rotation and reconfiguration, resulting in a higher film crack-onset strain (COS: 18.32% for PBDB-T/PY-SiO vs 11.15% for PBDB-T/PY-EH). Additionally, the PY-SiO-based stretchable all-PSCs exhibited an impressive PCE of 9.8% and retained >70% of its original PCE even under a substantial 20% strain, exceeding the performance of the PY-EH-based stretchable all-PSCs. Our result suggests the great potential of the siloxane-terminated side chain for achieving high-performance and stretchable OSCs.

4.
ACS Appl Mater Interfaces ; 16(1): 1217-1224, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164790

RESUMEN

All-inorganic wide-bandgap perovskite CsPbI2Br has attracted much attention because of its inherent thermal stability and ideal bandgap for the front subcell of tandem solar cells (TSCs). However, the low power conversion efficiency (PCE) and poor moisture stability of CsPbI2Br still restrict its future commercialization. Herein, zirconium tetrachloride (ZrCl4) was doped into CsPbI2Br films to modulate the crystal growth and improve the film quality. The partial substitution of the B-site Pb2+ of CsPbI2Br with Zr4+ suppresses the unwanted phase conversion from the crystallized black α-phase to the δ-phase, resulting in improved phase stability. Consequently, the humidity and thermal stability of the film are greatly improved. Additionally, the incorporation of ZrCl4 suppresses nonradiative recombination and forms a matched energy-level alignment with the hole-transport layer (Spiro-OMeTAD). Benefiting from these features, the ZrCl4-doped CsPbI2Br perovskite solar cell (PSC) shows an outstanding efficiency of 16.60% with a high open-circuit voltage of 1.29 V. The unencapsulated devices simultaneously show excellent humidity and thermal stability, retaining over 91% of PCEinitial after 1000 h of aging in ambient air conditions and 92% PCEinitial after 500 h of continuous heating at 85 °C in a nitrogen environment, respectively. Furthermore, ZrCl4-doped CsPbI2Br was employed as the front subcell of perovskite/organic TSCs and achieved a remarkable PCE of 19.42%, showing great potential for highly efficient and stable TSCs.

5.
J Phys Chem Lett ; 13(21): 4739-4746, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35611967

RESUMEN

Quasi-2D perovskite light-emitting diodes (PeLEDs) have attracted significant attention for their promising light-emitting applications. However, quasi-2D perovskite films typically consist of a broad phase distribution and small grains with a large surface area to volume ratio, leading to inferior color purities and higher defect densities. Herein, a bifunctional additive ((l)-tryptophan bromide, l-TrpBr) was introduced into a quasi-2D perovskite film. The C═O moiety of l-TprBr formed hydrogen bonds with S-MBA+, retarding the coordination between S-MBABr and [PbBr6]4- and suppressing the formation of small-n phases. The C═O moiety also coordinated with unsaturated Pb2+ sites to passivate the defects. Finally, the PeLEDs with l-TrpBr exhibited a significantly improved EQE of 14.32% compared to the control devices (7.88%) and the narrowest fwhm (17 nm) for green quasi-2D PeLEDs reported to date. Our work provides a practical approach to controlling the phase distribution and passivating the defects in quasi-2D perovskite films, toward high-efficiency and color-pure quasi-2D PeLEDs.

6.
Adv Mater ; 34(1): e2107211, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34648207

RESUMEN

Owing to their insufficient light absorption and charge transport, 2D Ruddlesden-Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D-like phase to 2D phases, and X-ray diffraction (XRD) studies reveal that FA-based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier-diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ-phase formation of pure FA-based 2D PSCs. As a result, both FA/MA mixed and pure FA-based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA-based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low-dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA-based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure-FA-based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA