Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(6): 1247-1257.e12, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28844695

RESUMEN

The respiratory megacomplex represents the highest-order assembly of respiratory chain complexes, and it allows mitochondria to respond to energy-requiring conditions. To understand its architecture, we examined the human respiratory chain megacomplex-I2III2IV2 (MCI2III2IV2) with 140 subunits and a subset of associated cofactors using cryo-electron microscopy. The MCI2III2IV2 forms a circular structure with the dimeric CIII located in the center, where it is surrounded by two copies each of CI and CIV. Two cytochrome c (Cyt.c) molecules are positioned to accept electrons on the surface of the c1 state CIII dimer. Analyses indicate that CII could insert into the gaps between CI and CIV to form a closed ring, which we termed the electron transport chain supercomplex. The structure not only reveals the precise assignment of individual subunits of human CI and CIII, but also enables future in-depth analysis of the electron transport chain as a whole.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Complejos Multienzimáticos/química , Microscopía por Crioelectrón , Proteínas del Complejo de Cadena de Transporte de Electrón/aislamiento & purificación , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/aislamiento & purificación , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/aislamiento & purificación , Complejo II de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/aislamiento & purificación , Complejos Multienzimáticos/metabolismo
2.
Cell ; 167(6): 1598-1609.e10, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912063

RESUMEN

The mammalian respiratory chain complexes assemble into supercomplexes (SCs) and reside in the inner mitochondrial membrane to transfer electrons and establish the proton gradient for complex V to synthesize ATP. The precise arrangement of SCs is largely unknown. Here, we report a 4.0-Å cryo-electron microscopy (cryo-EM) structure of the major SC in porcine heart, the 1.7-MDa SCI1III2IV1. The complex III (CIII) dimer and complex IV (CIV) bind at the same side of the L-shaped complex I (CI). Several accessory or supernumerary subunits of CI, such as NDUFA11, NDUFB4, NDUFB8, and NDUFB9, directly contribute to the oligomerization of CI, CIII, and CIV. COX7C and COX7A of CIV attach CIV to the concave surface formed by CIII and the distal end of membrane arm of CI. The structure suggests a possible mechanism by which electrons are transferred from NADH to cytochrome c and provides a platform for future functional dissection of respiration.


Asunto(s)
Transporte de Electrón , Mitocondrias Cardíacas/química , Membranas Mitocondriales/química , Animales , Microscopía por Crioelectrón , Modelos Moleculares , Complejos Multienzimáticos/química , Bombas de Protones/química , Sus scrofa
3.
Cell ; 165(6): 1454-1466, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27212239

RESUMEN

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.


Asunto(s)
Canales de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Ataxia/genética , Células COS , Calcio/metabolismo , Canales de Calcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Discapacidad Intelectual/genética , Membranas Intracelulares/metabolismo , Ratones , Ratones Noqueados , Osteogénesis/genética , Alineación de Secuencia
4.
Mol Cell ; 82(23): 4503-4518.e8, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306795

RESUMEN

In the type III-E CRISPR-Cas system, a Cas effector (gRAMP) is associated with a TPR-CHAT to form Craspase (CRISPR-guided caspase). However, both the structural features of gRAMP and the immunity mechanism remain unknown for this system. Here, we report structures of gRAMP-crRNA and gRAMP:cRNA:target RNA as well as structures of Craspase and Craspase complexed with cognate target RNA (CTR) or non-cognate target RNA (NTR). Importantly, the 3' anti-tag region of NTR and CTR binds at two distinct channels in Craspase, and CTR with a non-complementary 3' anti-tag induces a marked conformational change of the TPR-CHAT, which allosterically activates its protease activity to cleave an ancillary protein Csx30. This cleavage then triggers an abortive infection as the antiviral strategy of the type III-E system. Together, our study provides crucial insights into both the catalytic mechanism of the gRAMP and the immunity mechanism of the type III-E system.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , ARN/metabolismo , Antivirales , Sistemas CRISPR-Cas , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo
5.
Nat Chem Biol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977786

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are prokaryotic adaptive immune systems against invading phages and other mobile genetic elements. Notably, some phages, including the Vibrio cholerae-infecting ICP1 (International Center for Diarrheal Disease Research, Bangladesh cholera phage 1), harbor CRISPR-Cas systems to counteract host defenses. Nevertheless, ICP1 Cas8f lacks the helical bundle domain essential for recruitment of helicase-nuclease Cas2/3 during target DNA cleavage and how this system accomplishes the interference stage remains unknown. Here, we found that Cas1, a highly conserved component known to exclusively work in the adaptation stage, also mediates the interference stage through connecting Cas2/3 to the DNA-bound CRISPR-associated complex for antiviral defense (Cascade; CRISPR system yersinia, Csy) of the ICP1 CRISPR-Cas system. A series of structures of Csy, Csy-dsDNA (double-stranded DNA), Cas1-Cas2/3 and Csy-dsDNA-Cas1-Cas2/3 complexes reveal the whole process of Cas1-mediated target DNA cleavage by the ICP1 CRISPR-Cas system. Together, these data support an unprecedented model in which Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system and the study also sheds light on a unique model of primed adaptation.

6.
Nat Chem Biol ; 18(6): 670-677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35301482

RESUMEN

CRISPR-Cas systems are prokaryotic antiviral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here we present structural and functional analyses of AcrIF5, exploring its unique anti-CRISPR mechanism. AcrIF5 shows binding specificity only for the target DNA-bound form of the crRNA-guided surveillance (Csy) complex, but not the apo Csy complex from the type I-F CRISPR-Cas system. We solved the structure of the Csy-dsDNA-AcrIF5 complex, revealing that the conformational changes of the Csy complex caused by dsDNA binding dictate the binding specificity for the Csy-dsDNA complex by AcrIF5. Mechanistically, five AcrIF5 molecules bind one Csy-dsDNA complex, which destabilizes the helical bundle domain of Cas8f, thus preventing subsequent Cas2/3 recruitment. AcrIF5 exists in symbiosis with AcrIF3, which blocks Cas2/3 recruitment. This attack on the recruitment event stands in contrast to the conventional mechanisms of blocking binding of target DNA. Overall, our study reveals an unprecedented mechanism of CRISPR-Cas inhibition by AcrIF5.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , ADN/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Nature ; 557(7707): 674-678, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795342

RESUMEN

Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.


Asunto(s)
Legionella pneumophila/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Arginina/metabolismo , Proteínas Bacterianas , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , NAD/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Ubiquitina/química
8.
J Biol Chem ; 298(11): 102575, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209819

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides prokaryotes with protection against mobile genetic elements such as phages. In turn, phages deploy anti-CRISPR (Acr) proteins to evade this immunity. AcrIF4, an Acr targeting the type I-F CRISPR-Cas system, has been reported to bind the crRNA-guided surveillance (Csy) complex. However, it remains controversial whether AcrIF4 inhibits target DNA binding to the Csy complex. Here, we present structural and mechanistic studies into AcrIF4, exploring its unique anti-CRISPR mechanism. While the Csy-AcrIF4 complex displays decreased affinity for target DNA, it is still able to bind the DNA. Our structural and functional analyses of the Csy-AcrIF4-dsDNA complex revealed that AcrIF4 binding prevents rotation of the helical bundle of the Cas8f subunit induced by dsDNA binding, therefore resulting in failure of nuclease Cas2/3 recruitment and DNA cleavage. Overall, our study provides an interesting example of attack on the nuclease recruitment event by an Acr, but not conventional mechanisms of blocking binding of target DNA.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/metabolismo , División del ADN , Sistemas CRISPR-Cas , Pseudomonas aeruginosa/metabolismo , Bacteriófagos/metabolismo , Endonucleasas/metabolismo
9.
Nucleic Acids Res ; 49(17): 10178-10191, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34432044

RESUMEN

CRISPR-Cas systems are bacterial adaptive immune systems, and phages counteract these systems using many approaches such as producing anti-CRISPR (Acr) proteins. Here, we report the structures of both AcrIF14 and its complex with the crRNA-guided surveillance (Csy) complex. Our study demonstrates that apart from interacting with the Csy complex to block the hybridization of target DNA to the crRNA, AcrIF14 also endows the Csy complex with the ability to interact with non-sequence-specific dsDNA as AcrIF9 does. Further structural studies of the Csy-AcrIF14-dsDNA complex and biochemical studies uncover that the PAM recognition loop of the Cas8f subunit of the Csy complex and electropositive patches within the N-terminal domain of AcrIF14 are essential for the non-sequence-specific dsDNA binding to the Csy-AcrIF14 complex, which is different from the mechanism of AcrIF9. Our findings highlight the prevalence of Acr-induced non-specific DNA binding and shed light on future studies into the mechanisms of such Acr proteins.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Pseudomonas aeruginosa/genética , Bacteriófagos/genética , Bacteriófagos/crecimiento & desarrollo , Proteínas Asociadas a CRISPR/metabolismo , ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Conformación Proteica , Pseudomonas aeruginosa/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Nature ; 537(7622): 639-43, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27654917

RESUMEN

The respiratory chain complexes I, III and IV (CI, CIII and CIV) are present in the bacterial membrane or the inner mitochondrial membrane and have a role of transferring electrons and establishing the proton gradient for ATP synthesis by complex V. The respiratory chain complexes can assemble into supercomplexes (SCs), but their precise arrangement is unknown. Here we report a 5.4 Å cryo-electron microscopy structure of the major 1.7 megadalton SCI1III2IV1 respirasome purified from porcine heart. The CIII dimer and CIV bind at the same side of the L-shaped CI, with their transmembrane domains essentially aligned to form a transmembrane disk. Compared to free CI, the CI in the respirasome is more compact because of interactions with CIII and CIV. The NDUFA11 and NDUFB9 supernumerary subunits of CI contribute to the oligomerization of CI and CIII. The structure of the respirasome provides information on the precise arrangements of the respiratory chain complexes in mitochondria.


Asunto(s)
Respiración de la Célula , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/química , Animales , Sitios de Unión , Transporte de Electrón , Complejo I de Transporte de Electrón/aislamiento & purificación , Mitocondrias/ultraestructura , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Porcinos
11.
Genes Dev ; 28(11): 1217-27, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24835250

RESUMEN

Post-translational modifications of histones are significant regulators of replication, transcription, and DNA repair. Particularly, newly synthesized histone H4 in H3/H4 heterodimers becomes acetylated on N-terminal lysine residues prior to its incorporation into chromatin. Previous studies have established that the histone acetyltransferase (HAT) complex Hat1p/Hat2p medicates this modification. However, the mechanism of how Hat1p/Hat2p recognizes and facilitates the enzymatic activities on the newly assembled H3/H4 heterodimer remains unknown. Furthermore, Hat2p is a WD40 repeat protein, which is found in many histone modifier complexes. However, how the WD40 repeat proteins facilitate enzymatic activities of histone modification enzymes is unclear. In this study, we first solved the high-resolution crystal structure of a Hat1p/Hat2p/CoA/H4 peptide complex and found that the H4 tail interacts with both Hat1p and Hat2p, by which substrate recruitment is facilitated. We further discovered that H3 N-terminal peptides can bind to the Hat2p WD40 domain and solved the structure of the Hat1p/Hat2p/CoA/H4/H3 peptide complex. Moreover, the interaction with Hat2p requires unmodified Arg2/Lys4 and Lys9 on the H3 tail, suggesting a novel model to specify the activity of Hat1p/Hat2p toward newly synthesized H3/H4 heterodimers. Together, our study demonstrated the substrate recognition mechanism by the Hat1p/Hat2p complex, which is critical for DNA replication and other chromatin remodeling processes.


Asunto(s)
Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas , Modelos Moleculares , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetilación , Histona Acetiltransferasas/genética , Histonas/química , Histonas/metabolismo , Metilación , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
12.
Nature ; 527(7576): 64-9, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26390154

RESUMEN

Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 Å. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.


Asunto(s)
Microscopía por Crioelectrón , Canales Iónicos/química , Canales Iónicos/ultraestructura , Animales , Membrana Celular/metabolismo , Conductividad Eléctrica , Activación del Canal Iónico , Canales Iónicos/metabolismo , Ratones , Modelos Moleculares , Docilidad , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
13.
Nature ; 524(7564): 186-91, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26222030

RESUMEN

DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior ß-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Subunidades de Proteína/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Cromatina/química , Secuencia Conservada , ADN/química , ADN/metabolismo , ADN/ultraestructura , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/ultraestructura , Fase G1 , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Biológicos , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Desnaturalización de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
14.
Nature ; 505(7482): 229-33, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24402281

RESUMEN

The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-ß-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-ß, CUL5 and ELOC. The larger domain (α/ß domain) of Vif binds to the same side of CBF-ß as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-ß binding. Interactions of the smaller domain (α-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the α-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-ß and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/química , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Cristalografía por Rayos X , Elonguina , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de la Señalización de Citocinas , Factores de Transcripción/química , Factores de Transcripción/metabolismo
15.
New Phytol ; 221(2): 1060-1073, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30204242

RESUMEN

A common assumption in comparative genomics is that orthologous genes are functionally more similar than paralogous genes. However, the validity of this assumption needs to be assessed using robust experimental data. We conducted tissue-specific gene expression and protein function analyses of orthologous groups within the glutathione S-transferase (GST) gene family in three closely related Populus species: Populus trichocarpa, Populus euphratica and Populus yatungensis. This study identified 21 GST orthologous groups in the three Populus species. Although the sequences of the GST orthologous groups were highly conserved, the divergence in enzymatic functions was prevalent. Through site-directed mutagenesis of orthologous proteins, this study revealed that nonsynonymous substitutions at key amino acid sites played an important role in the divergence of enzymatic functions. In particular, a single amino acid mutation (Arg39→Trp39) contributed to P. euphratica PeGSTU30 possessing high enzymatic activity via increasing the hydrophobicity of the active cavity. This study provided experimental evidence showing that orthologues belonging to the gene family have functional divergences. The nonsynonymous substitutions at a few amino acid sites resulted in functional divergence of the orthologous genes. Our findings provide new insights into the evolution of orthologous genes in closely related species.


Asunto(s)
Glutatión Transferasa/metabolismo , Populus/enzimología , Sustitución de Aminoácidos , Glutatión Transferasa/química , Glutatión Transferasa/genética , Modelos Moleculares , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Mutación , Especificidad de Órganos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética
16.
Nature ; 491(7424): 478-82, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23086143

RESUMEN

The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.


Asunto(s)
Complejo I de Transporte de Electrón/química , Mitocondrias/enzimología , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Cristalografía por Rayos X , Complejo I de Transporte de Electrón/aislamiento & purificación , Complejo I de Transporte de Electrón/metabolismo , NAD/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/química
17.
Mol Cell ; 39(6): 963-74, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20864041

RESUMEN

The melanoma antigen (MAGE) family consists of more than 60 genes, many of which are cancer-testis antigens that are highly expressed in cancer and play a critical role in tumorigenesis. However, the biochemical and cellular functions of this enigmatic family of proteins have remained elusive. Here, we identify really interesting new gene (RING) domain proteins as binding partners for MAGE family proteins. Multiple MAGE family proteins bind E3 RING ubiquitin ligases with specificity. The crystal structure of one of these MAGE-RING complexes, MAGE-G1-NSE1, reveals structural insights into MAGE family proteins and their interaction with E3 RING ubiquitin ligases. Biochemical and cellular assays demonstrate that MAGE proteins enhance the ubiquitin ligase activity of RING domain proteins. For example, MAGE-C2-TRIM28 is shown to target p53 for degradation in a proteasome-dependent manner, consistent with its tumorigenic functions. These findings define a biochemical and cellular function for the MAGE protein family.


Asunto(s)
Antígenos Específicos del Melanoma/metabolismo , Dominios RING Finger , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biocatálisis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Antígenos Específicos del Melanoma/química , Antígenos Específicos del Melanoma/genética , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transfección , Proteína 28 que Contiene Motivos Tripartito , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
18.
Proc Natl Acad Sci U S A ; 112(16): 5243-8, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848002

RESUMEN

ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate a variety of substrates, ranging from ions to macromolecules, either out of or into the cytosol (hence defined as importers or exporters, respectively). It has been demonstrated that ABC exporters and importers function through a common mechanism involving conformational switches between inward-facing and outward-facing states; however, the mechanism underlying their functions, particularly substrate recognition, remains elusive. Here we report the structures of an amino acid ABC importer Art(QN)2 from Thermoanaerobacter tengcongensis composed of homodimers each of the transmembrane domain ArtQ and the nucleotide-binding domain ArtN, either in its apo form or in complex with substrates (Arg, His) and/or ATPs. The structures reveal that the straddling of the TMDs around the twofold axis forms a substrate translocation pathway across the membrane. Interestingly, each TMD has a negatively charged pocket that together create a negatively charged internal tunnel allowing amino acids carrying positively charged groups to pass through. Our structural and functional studies provide a better understanding of how ABC transporters select and translocate their substrates.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Thermoanaerobacter/enzimología , Adenosina Trifosfato/metabolismo , Apoproteínas/metabolismo , Arginina/metabolismo , Sitios de Unión , Ligandos , Modelos Moleculares , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Phys Chem Chem Phys ; 19(6): 4849-4854, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28134365

RESUMEN

Ndi1 is a special type-II complex I nicotinamide-adenine-dinucleotide (NADH):ubiquinone (UQ) oxidoreductase in the yeast respiratory chain, with two bound UQs (UQI and UQII) mediating electron transfer from flavin cofactors to ubiquinone, in the absence of Fe-S chains. Here, we elucidate the underlying mechanism of electron transfer in Ndi1 through temperature-dependent Electron Spin Resonance (ESR) experiments in conjunction with quantum chemical calculations. It is revealed that electron transfer is mediated by antiferromagnetic (AFM) interactions between flavin-adenosine-dinucleotide (FAD) and UQI and between UQI and UQII. The π-stacking interactions among the aromatic complexes also enhance the through-space electron transfer. The FAD/UQI pair works as a rectifier converting double-electron co-transfer into sequential single-electron transfer events. The results not only expand our understanding on the observed AFM interactions among p-orbital aromatic mixed-stack in proteins, but also provide significant insights into the fabrication of materials with special magnetic properties using biological samples.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Complejo I de Transporte de Electrón/metabolismo , Transporte de Electrón , Modelos Químicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Complejo I de Transporte de Electrón/química , Hierro/química , Magnetismo , Proteínas de Saccharomyces cerevisiae/química
20.
Nature ; 474(7352): 472-6, 2011 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-21666666

RESUMEN

Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Colestanoles/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Esteroides Heterocíclicos/metabolismo , Sitios de Unión , Brasinoesteroides , Colestanoles/química , Cristalografía por Rayos X , Activación Enzimática , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Esteroides Heterocíclicos/química , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA