Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(25): e2310221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396158

RESUMEN

Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of PSEP are not well understood, especially the intermediate processes leading to delivery. PSEP is an electrical method, yet the relationship between PSEP and electrical impedance remains underexplored. In this study, a device capable of measuring impedance and performing PSEP is developed and the changes in transepithelial electrical impedance (TEEI) are monitored. These measurements show TEEI increases following PSEP, unlike other electroporation methods. The authors then demonstrate how cell culture conditions and electrical waveforms influence this response. More importantly, TEEI response features are correlated with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which the authors expect will aid PSEP optimization for new cell types and cargos.


Asunto(s)
Impedancia Eléctrica , Electroporación , Electroporación/métodos , Porosidad , Animales , Humanos , Supervivencia Celular
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33531347

RESUMEN

Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.


Asunto(s)
Uniones Intercelulares/metabolismo , Estrés Mecánico , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Citoesqueleto/metabolismo , Elasticidad , Humanos , Uniones Intercelulares/química , Viscosidad
3.
Adv Funct Mater ; 33(3)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36817407

RESUMEN

Two-photon polymerization (TPP) has been widely used to create 3D micro- and nanoscale scaffolds for biological and mechanobiological studies, which often require the mechanical characterization of the TPP fabricated structures. To satisfy physiological requirements, most of the mechanical characterizations need to be conducted in liquid. However, previous characterizations of TPP fabricated structures were all conducted in air due to the limitation of conventional micro- and nanoscale mechanical testing methods. In this study, we report a new experimental method for testing the mechanical properties of TPP-printed microfibers in liquid. The experiments show that the mechanical behaviors of the microfibers tested in liquid are significantly different from those tested in air. By controlling the TPP writing parameters, the mechanical properties of the microfibers can be tailored over a wide range to meet a variety of mechanobiology applications. In addition, it is found that, in water, the plasticly deformed microfibers can return to their pre-deformed shape after tensile strain is released. The shape recovery time is dependent on the size of microfibers. The experimental method represents a significant advancement in mechanical testing of TPP fabricated structures and may help release the full potential of TPP fabricated 3D tissue scaffold for mechanobiological studies.

4.
Biochem Biophys Res Commun ; 606: 42-48, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35339750

RESUMEN

It is increasingly recognized that interaction of adipose cells with extracellular mechanophysical milieus may play a role in regulating adipogenesis and differentiated adipocyte function and such interaction can be mediated by the mechanics of adipose cells. We measured the stiffness and traction force of adipose cells and examined the role of Rho/ROCK, the upstream effector of actin cytoskeletal contractility, in affecting these mechanical properties. Cellular Young's modulus obtained from atomic force microscopy (AFM) was significantly reduced by ROCK inhibitor (Y-27632) but elevated by Rho activator (CN01), for both preadipocytes and differentiated adipocytes. Immunofluorescent imaging suggested this could be attributed to the changes in Rho/ROCK-induced stressed actin filament formation. AFM also confirmed that differentiated adipocytes had higher stiffness than preadipocytes. On the other hand, traction force microscopy (TFM) revealed differentiated adipocytes exerted lower traction forces than preadipocytes. Traction forces of both preadipocytes and adipocytes were decreased by ROCK inhibition, but not significantly altered by Rho activation. Notably, an increasing trend of traction force with respect to cell spreading area was detected, and this trend was substantially amplified by Rho activation. Such traction force-cell area correlation was an order-of-magnitude smaller for differentiated adipocytes relative to preadipocytes, potentially due to disrupted force transmission through cytoskeleton-focal adhesion linkage by lipid droplets. Our work provides new data evidencing the Rho/ROCK control in adipose cell mechanics, laying the groundwork for adipocyte mechanotransduction studies on adipogenesis and adipose tissue remodeling.


Asunto(s)
Mecanotransducción Celular , Tracción , Adipocitos , Adipogénesis , Adhesiones Focales , Microscopía de Fuerza Atómica
5.
Small ; 18(12): e2106196, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322558

RESUMEN

Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.


Asunto(s)
ADN , Microfluídica
6.
Biomed Microdevices ; 24(4): 33, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36207557

RESUMEN

We previously reported a single-cell adhesion micro tensile tester (SCAµTT) fabricated from IP-S photoresin with two-photon polymerization (TPP) for investigating the mechanics of a single cell-cell junction under defined tensile loading. A major limitation of the platform is the autofluorescence of IP-S, the photoresin for TPP fabrication, which significantly increases background signal and makes fluorescent imaging of stretched cells difficult. In this study, we report the design and fabrication of a new SCAµTT platform that mitigates autofluorescence and demonstrate its capability in imaging a single cell pair as its mutual junction is stretched. By employing a two-material design using IP-S and IP-Visio, a photoresin with reduced autofluorescence, we show a significant reduction in autofluorescence of the platform. Further, by integrating apertures onto the substrate with a gold coating, the influence of autofluorescence on imaging is almost completely mitigated. With this new platform, we demonstrate the ability to image a pair of epithelial cells as they are stretched up to 250% strain, allowing us to observe junction rupture and F-actin retraction while simultaneously recording the accumulation of over 800 kPa of stress in the junction. The platform and methodology presented here can potentially enable detailed investigation of the mechanics of and mechanotransduction in cell-cell junctions and improve the design of other TPP platforms in mechanobiology applications.


Asunto(s)
Actinas , Mecanotransducción Celular , Actinas/metabolismo , Oro , Uniones Intercelulares/metabolismo , Polimerizacion
7.
Biophys J ; 118(11): 2656-2669, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32380000

RESUMEN

Cell adhesion to the extracellular matrix (ECM) is highly active and plays a crucial role in various physiological functions. The active response of cells to physicochemical cues has been universally discovered in multiple microenvironments. However, the mechanisms to rule these active behaviors of cells are still poorly understood. Here, we establish an active model to probe the biomechanical mechanisms governing cell adhesion. The framework of cells is modeled as a tensional integrity that is maintained by cytoskeletons and extracellular matrices. Active movement of the cell model is self-driven by its intrinsic tendency to intracellular tensioning, defined as tensioning-taxis in this study. Tensioning-taxis is quantified as driving potential to actuate cell adhesion, and the traction forces are solved by our proposed numerical method of local free energy adaptation. The modeling results account for the active adhesion of cells with dynamic protruding of leading edge and power-law development of mechanical properties. Furthermore, the morphogenesis of cells evolves actively depending on actin filaments alignments by a predicted mechanism of scaling and directing traction forces. The proposed model provides a quantitative way to investigate the active mechanisms of cell adhesion and holds the potential to guide studies of more complex adhesion and motion of cells coupled with multiple external cues.


Asunto(s)
Modelos Biológicos , Taxia , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Matriz Extracelular
8.
Adv Funct Mater ; 30(13)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-34354556

RESUMEN

Chronic wounds are one of the most devastating complications of diabetes and are the leading cause of nontraumatic limb amputation. Despite the progress in identifying factors and promising in vitro results for the treatment of chronic wounds, their clinical translation is limited. Given the range of disruptive processes necessary for wound healing, different pharmacological agents are needed at different stages of tissue regeneration. This requires the development of wearable devices that can deliver agents to critical layers of the wound bed in a minimally invasive fashion. Here, for the first time, a programmable platform is engineered that is capable of actively delivering a variety of drugs with independent temporal profiles through miniaturized needles into deeper layers of the wound bed. The delivery of vascular endothelial growth factor (VEGF) through the miniaturized needle arrays demonstrates that, in addition to the selection of suitable therapeutics, the delivery method and their spatial distribution within the wound bed is equally important. Administration of VEGF to chronic dermal wounds of diabetic mice using the programmable platform shows a significant increase in wound closure, re-epithelialization, angiogenesis, and hair growth when compared to standard topical delivery of therapeutics.

9.
Small ; 16(51): e2004917, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33241661

RESUMEN

In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.


Asunto(s)
Electroporación , Microfluídica , Supervivencia Celular , Ingeniería de Tejidos , Transfección
10.
J Biomech Eng ; 142(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32346724

RESUMEN

During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement-an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Humanos , Células MCF-7
11.
IEEE Trans Nanotechnol ; 18: 509-517, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32051682

RESUMEN

Increasingly targeted in drug discovery, protein-protein interactions challenge current high throughput screening technologies in the pharmaceutical industry. Developing an effective and efficient method for screening small molecules or compounds is critical to accelerate the discovery of ligands for enzymes, receptors and other pharmaceutical targets. Here, we report developments of methods to increase the signal-to-noise ratio (SNR) for screening protein-protein interactions using atomic force microscopy (AFM) force spectroscopy. We have demonstrated the effectiveness of these developments on detecting the binding process between focal adhesion kinases (FAK) with protein kinase B (Akt1), which is a target for potential cancer drugs. These developments include optimized probe and substrate functionalization processes and redesigned probe-substrate contact regimes. Furthermore, a statistical-based data processing method was developed to enhance the contrast of the experimental data. Collectively, these results demonstrate the potential of the AFM force spectroscopy in automating drug screening with high throughput.

12.
Anal Chem ; 90(17): 10340-10349, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30088414

RESUMEN

We previously reported the finding of a linear correlation between the change of energy dissipation (Δ D) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the Δ D-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid trapped between the QCM-D sensor and the basal membrane of the cell layer, and the intracellular viscous damping through the viscous slip between the cytoplasm and stress fibers as well as among stress fibers themselves. Our modeling study shows that the interfacial viscous damping by the trapped liquid is the primary process for energy dissipation during the early stage of the cell adhesion, whereas the dynamic restructuring of cell-ECM bonds becomes more prevalent during the later stage of the cell adhesion. Our modeling study also establishes a positive linear correlation between the Δ D-response and the level of cell adhesion quantified with the number of cell-ECM bonds, which corroborates our previous experimental finding. This correlation with a wide well-defined linear dynamic range provides a much needed theoretical validation of the dissipation monitoring function of the QCM-D as a powerful quantitative analytical tool for cell study.


Asunto(s)
Adhesión Celular , Metabolismo Energético , Tecnicas de Microbalanza del Cristal de Cuarzo , Matriz Extracelular/metabolismo , Modelos Teóricos
13.
Small ; 14(12): e1702495, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29430869

RESUMEN

Stably transfected cell lines are widely used in drug discovery and biological research to produce recombinant proteins. Generation of these cell lines requires the isolation of multiple clones, using time-consuming dilution methods, to evaluate the expression levels of the gene of interest. A new and efficient method is described for the generation of monoclonal cell lines, without the need for dilution cloning. In this new method, arrays of patterned cell colonies and single cell transfection are employed to deliver a plasmid coding for a reporter gene and conferring resistance to an antibiotic. Using a nanofountain probe electroporation system, probe positioning is achieved through a micromanipulator with sub-micron resolution and resistance-based feedback control. The array of patterned cell colonies allows for rapid selection of numerous stably transfected clonal cell lines located on the same culture well, conferring a significant advantage over slower and labor-intensive traditional methods. In addition to plasmid integration, this methodology can be seamlessly combined with CRISPR/Cas9 gene editing, paving the way for advanced cell engineering.


Asunto(s)
Sistemas CRISPR-Cas/genética , Electroporación/métodos , Animales , Línea Celular , Edición Génica/métodos , Humanos , Plásmidos/genética , Transfección
14.
Nanomedicine ; 11(1): 137-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25200612

RESUMEN

We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis.


Asunto(s)
Filamentos Intermedios/química , Queratinocitos/citología , Nanomedicina/métodos , Robótica , Cirugía Asistida por Computador/métodos , Apoptosis , Enfermedades Autoinmunes/metabolismo , Cationes , Adhesión Celular , Línea Celular , Citoesqueleto/metabolismo , Desmosomas/metabolismo , Humanos , Microscopía de Fuerza Atómica , Nanoestructuras , Estrés Mecánico
15.
Micromachines (Basel) ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38930644

RESUMEN

A micro-electromechanical system (MEMS) is a micro device or system that utilizes large-scale integrated circuit manufacturing technology and microfabrication technology to integrate microsensors, micro-actuators, microstructures, signal processing and control circuits, power supplies, and communication interfaces into one or more chips [...].

16.
R Soc Open Sci ; 11(4): 231074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660600

RESUMEN

Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behaviour, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behaviour at different length scales into classic viscoelastic models by either adding an active tension-generating element or adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.

17.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766211

RESUMEN

Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.

18.
Biophys J ; 105(1): 40-7, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823222

RESUMEN

Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.


Asunto(s)
Integrinas/metabolismo , Espacio Intracelular/metabolismo , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Robótica , Células CACO-2 , Humanos , Espacio Intracelular/enzimología , Oligopéptidos/metabolismo , Unión Proteica
19.
Exp Cell Res ; 318(5): 521-6, 2012 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-22227009

RESUMEN

Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/metabolismo , Receptores ErbB/agonistas , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Módulo de Elasticidad , Factor de Crecimiento Epidérmico/fisiología , Receptores ErbB/metabolismo , Humanos , Microscopía de Fuerza Atómica , Propiedades de Superficie
20.
Nanomedicine ; 9(5): 636-45, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23178285

RESUMEN

Distinct biochemical, electrochemical and electromechanical coupling processes of pancreatic ß-cells may well underlie different response patterns of insulin release from glucose and capsaicin stimulation. Intracellular Ca(2+) levels increased rapidly and dose-dependently upon glucose stimulation, accompanied with about threefold rapid increases in cellular stiffness. Subsequently, cellular stiffness diminished rapidly and settled at a value about twofold of the baseline. Capsaicin caused a similar transient increase in intracellular Ca(2+) changes. However, cellular stiffness increased gradually to about twofold until leveling off. The current study characterizes for the first time the biophysical properties underlying glucose-induced biphasic responses of insulin secretion, distinctive from the slow and single-phased stiffness response to capsaicin despite similar changes in intracellular Ca(2+) levels. The integrated AFM nanorobotics and optical investigation enables the fine dissection of mechano-property from ion channel activities in response to specific and non-specific agonist stimulation, providing novel biomechanical markers for the insulin secretion process. FROM THE CLINICAL EDITOR: This study characterizes the biophysical properties underlying glucose-induced biphasic responses of insulin secretion. Integrated AFM nanorobotics and optical investigations provided novel biomechanical markers for the insulin secretion process.


Asunto(s)
Fenómenos Biofísicos , Insulina/metabolismo , Insulinoma/metabolismo , Nanotecnología/instrumentación , Robótica/instrumentación , Calcio/metabolismo , Capsaicina/farmacología , Línea Celular Tumoral , AMP Cíclico/metabolismo , Glucosa/farmacología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Insulinoma/patología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Microscopía de Fuerza Atómica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA