Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Plant Biol ; 24(1): 68, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262956

RESUMEN

BACKGROUND: Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS: Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION: This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.


Asunto(s)
Carica , Quitosano , Ciclopropanos , Compuestos Organofosforados , Frutas , Filogenia , Ácido Ascórbico
2.
BMC Biol ; 21(1): 181, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635218

RESUMEN

BACKGROUND: Functional role of Rho GDP-dissociation inhibitor beta (RhoGDIß) in tumor biology appears to be contradictory across various studies. Thus, the exploration of the molecular mechanisms underlying the differential functions of this protein in urinary bladder carcinogenesis is highly significant in the field. Here, RhoGDIß expression patterns, biological functions, and mechanisms leading to transformation and progression of human urothelial cells (UROtsa cells) were evaluated following varying lengths of exposure to the bladder carcinogen N-butyl-N-(4-hydmoxybutyl) nitrosamine (BBN). RESULTS: It was seen that compared to expression in vehicle-treated control cells, RhoGDIß protein expression was downregulated after 2-month of BBN exposure, but upregulated after 6-month of exposure. Assessments of cell function showed that RhoGDIß inhibited UROtsa cell growth in cells with BBN for 2-month exposure, whereas it promoted the invasion of cells treated with BBN for 6 months. Mechanistic studies revealed that 2-month of BBN exposure markedly attenuated DNMT3a abundance, and this led to reduced miR-219a promoter methylation, increased miR-219a binding to the RhoGDIß mRNA 3'UTR, and reduced RhoGDIß protein translation. While after 6-mo of BBN treatment, the cells showed increased PP2A/JNK/C-Jun axis phosphorylation and this in turn mediated overall RhoGDIß mRNA transcription and protein expression as well as invasion. CONCLUSIONS: These findings indicate that RhoGDIß is likely to inhibit the transformation of human urothelial cells during the early phase of BBN exposure, whereas it promotes invasion of the transformed/progressed urothelial cells in the late stage of BBN exposure. The studies also suggest that RhoGDIß may be a useful biomarker for evaluating the progression of human bladder cancers.


Asunto(s)
MicroARNs , Nitrosaminas , Humanos , Inhibidor beta de Disociación del Nucleótido Guanina rho , Nitrosaminas/toxicidad , Células Epiteliales , Carcinogénesis
3.
Sensors (Basel) ; 24(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733053

RESUMEN

The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action potential during conduction, reflecting the developmental status of the fetus in utero and its physiological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia, fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals with clear morphological information, this paper proposes a novel deep learning model, CBLS-CycleGAN. The model's generator combines spatial features extracted by the CNN with temporal features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess combined features with spatial and temporal dependencies. The model's discriminator utilizes PatchGAN, employing small segments of the signal as discriminative inputs to concentrate the training process on capturing signal details. Evaluating the model using two real FECG signal databases, namely "Abdominal and Direct Fetal ECG Database" and "Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations", resulted in a mean MSE and MAE of 0.019 and 0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value, and F1 of 99.51%, 99.57%, and 99.54%, respectively. This paper's model effectively preserves the morphological information of FECG signals, capturing not only the FQRS compound wave but also the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial diagnostic insights and a scientific foundation for developing rational treatment protocols.


Asunto(s)
Electrocardiografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Humanos , Electrocardiografía/métodos , Femenino , Embarazo , Aprendizaje Profundo , Monitoreo Fetal/métodos , Algoritmos , Feto
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(1): 51-59, 2023 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-36854548

RESUMEN

Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Electrocardiografía , Bases de Datos Factuales , Feto
5.
J Am Chem Soc ; 144(34): 15562-15568, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35980604

RESUMEN

Graphene has been widely used as a solar absorber for its broad-band absorption. However, targeting a higher photothermal efficiency, the intrinsic infrared radiation loss of graphene requires to be further reduced. Herein, band structure engineering is performed to modulate graphene infrared radiation. Nitrogen-doped vertical graphene is grown on quartz foam (NVGQF) by the plasma-enhanced chemical vapor deposition method. Under the premise of keeping high solar absorption (250-2500 nm), graphitic nitrogen doping effectively modulates the infrared emissivity (2.5-25 µm) of NVGQF from 0.96 to 0.68, reducing the radiation loss by ∼31%. Based on the excellent photothermal properties of NVGQF, a temperature-gradient-driven crude oil collecting raft is designed, where the crude oil flows along the collecting path driven by the viscosity gradient without any external electric energy input. Compared with a nondoped vertical graphene quartz foam raft, the NVGQF raft with a superior photothermal efficiency shows a significantly enhanced crude oil collecting efficiency by three times. The advances in this work suggest broad radiation-managed application platforms for graphene materials, such as seawater desalination and personal or building thermal management.

6.
BMC Plant Biol ; 22(1): 522, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357859

RESUMEN

Cauliflower is one of the most important vegetable crops grown worldwide. However, the lack of genetic diversity information and efficient molecular markers hinders efforts to improve cauliflower. This study aims to construct DNA fingerprints for 329 cauliflower cultivars based on SNP markers and the KASP system. After rigorous filtering, a total of 1662 candidate SNPs were obtained from nearly 17.9 million SNP loci. The mean values of PIC, MAF, heterozygosity and gene diversity of these SNPs were 0.389, 0.419, 0.075, and 0.506, respectively. We developed a program for in silico simulations on 153 core germplasm samples to generate ideal SNP marker sets from the candidates. Finally, 41 highly polymorphic KASP markers were selected and applied to identify 329 cauliflower cultivars, mainly collected from the public market. Furthermore, based on the KASP genotyping data, we performed phylogenetic analysis and population structure analysis of the 329 cultivars. As a result, these cultivars could be classified into three major clusters, and the classification patterns were significantly related to their curd solidity and geographical origin. Finally, fingerprints of the 329 cultivars and 2D barcodes with the genetic information of each sample were generated. The fingerprinting database developed in this study provides a practical tool for identifying the authenticity and purity of cauliflower seeds and valuable genetic information about the current cauliflower cultivars.


Asunto(s)
Brassica , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Brassica/genética , Filogenia , Dermatoglifia del ADN , Genética de Población , Variación Genética
7.
Sensors (Basel) ; 22(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35632114

RESUMEN

Fetal electrocardiograms (FECGs) provide important clinical information for early diagnosis and intervention. However, FECG signals are extremely weak and are greatly influenced by noises. FECG signal extraction and detection are still challenging. In this work, we combined the fast independent component analysis (FastICA) algorithm with singular value decomposition (SVD) to extract FECG signals. The improved wavelet mode maximum method was applied to detect QRS waves and ST segments of FECG signals. We used the abdominal and direct fetal ECG database (ADFECGDB) and the Cardiology Challenge Database (PhysioNet2013) to verify the proposed algorithm. The signal-to-noise ratio of the best channel signal reached 45.028 dB and the issue of missing waveforms was addressed. The sensitivity, positive predictive value and F1 score of fetal QRS wave detection were 96.90%, 98.23%, and 95.24%, respectively. The proposed algorithm may be used as a new method for FECG signal extraction and detection.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Electrocardiografía/métodos , Feto , Humanos , Relación Señal-Ruido
8.
J Chem Inf Model ; 61(10): 4900-4912, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34586824

RESUMEN

The protein kinase family contains many promising drug targets. Many kinase inhibitors target the ATP-binding pocket, leading to approved drugs in past decades. Scaffold hopping is an effective approach for drug design. The kinase ATP-binding pocket is highly conserved, crossing the whole kinase family. This provides an opportunity to develop a scaffold hopping approach to explore diversified scaffolds among various kinase inhibitors. In this work, we report the SyntaLinker-Hybrid scheme for kinase inhibitor scaffold hopping. With this scheme, we replace molecular fragments bound at the conserved kinase hinge region with deep generative models. Thus, we are able to generate new kinase-inhibitor-like structures hybridizing the privileged fragments against the hinge region. We demonstrate that this scheme allows generation of kinase-inhibitor-like molecules with novel scaffolds, while retaining the binding features of existing kinase inhibitors. This work can be employed in lead identification against kinase targets.


Asunto(s)
Aprendizaje Profundo , Diseño de Fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(7): 663-666, 2021 Jul 10.
Artículo en Zh | MEDLINE | ID: mdl-34247373

RESUMEN

OBJECTIVE: To explore gender difference in the clinical manifestations of two children with Keishi-Bukuryo-Gan syndrome (KBGS). METHODS: Clinical manifestations of the two children were reviewed. Genetic testing was carried out through next generation sequencing (NGS). Treatment was summarized, and the prognosis was followed up. RESULTS: Both children showed particular appearance including megatooth, abnormal hair distribution, hands' abnormality and language development delay. NGS revealed that both children have carried pathogenic variants of the ANKRD11 gene (c.1903_1907del and c.4911delT), which resulted in shifting of amino acid sequences starting from the Lysine and Proline at positions 635 and 1638, respectively. The female patient exhibited central precocious puberty. Her height has increased by 13 cm, and sex characteristics has retracted after treatment with leuprorelin for 23 months and recombinant human growth hormone for 1 month. CONCLUSION: Comparison of the two cases with different genders and summary of previously reported cases found that male KBGS patients have more obvious dysmorphisms such as triangular face, synophrys, ocular hypertelorism and vertebral body abnormality, with higher morbidity of epilepsy, mental retardation, autism, congenital heart disease, immune thrombocytopenia and other complications. KBGS is an autosomal dominant disease featuring more evident peculiar appearance and global development delay. Male patients often have multi-system involvement, and multidisciplinary cooperation is required for early recognition of particular features in order to improve the prognosis.


Asunto(s)
Discapacidad Intelectual , Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Niño , Facies , Femenino , Humanos , Masculino , Fenotipo , Proteínas Represoras/genética , Caracteres Sexuales , Anomalías Dentarias
10.
J Chem Inf Model ; 60(3): 1165-1174, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32013419

RESUMEN

The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, a major click chemistry reaction, is widely employed in drug discovery and chemical biology. However, the success rate of the CuAAC reaction is not satisfactory as expected, and in order to improve its performance, we developed a recurrent neural network (RNN) model to predict its feasibility. First, we designed and synthesized a structurally diverse library of 700 compounds with the CuAAC reaction to obtain experimental data. Then, using reaction SMILES as input, we generated a bidirectional long-short-term memory with a self-attention mechanism (BiLSTM-SA) model. Our best prediction model has total accuracy of 80%. With the self-attention mechanism, adverse substructures responsible for negative reactions were recognized and derived as quantitative descriptors. Density functional theory investigations were conducted to provide evidence for the correlation between bromo-α-C hybrid types and the success rate of the reaction. Quantitative descriptors combined with RDKit descriptors were fed to three machine learning models, a support vector machine, random forest, and logistic regression, and resulted in improved performance. The BiLSTM-SA model for predicting the feasibility of the CuAAC reaction is superior to other conventional learning methods and advances heuristic chemical rules.


Asunto(s)
Alquinos , Azidas , Catálisis , Química Clic , Cobre , Reacción de Cicloadición , Estudios de Factibilidad , Redes Neurales de la Computación
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 16(5): 489-93, 2014 May.
Artículo en Zh | MEDLINE | ID: mdl-24856998

RESUMEN

OBJECTIVE: To study the clinical characteristics of ecotopic viral integration site-1 (EVI1) and BCR/ABL positive childhood leukemia. METHODS: Clinical data of four children with EVI1 and BCR/ABL positive leukemia and eight children with BCR/ABL positive but EVI1 negative chronic myeloid leukemia (CML) were retrospectively analyzed. RESULTS: In the four children with EVI1 and BCR/ABL positive leukemia, two were initially diagnosed with chronic phase of CML, one with accelerated phase of CML and one with high-risk acute lymphoblastic leukemia (ALL). There were no significant differences in clinical characteristics at diagnosis between the patients with EVI1 and BCR/ABL positive leukemia and BCR/ABL positive but EVI1 negative leukemia. CD33 and CD38 were highly expressed and t(9;22) abnormality was present in all patients with EVI1 and BCR/ABL positive leukemia. Two of the 3 children with EVI1 and BCR/ABL positive CML achieved complete remission one or three months after treatment. Acquired negative status conversion occurred for EVI1 but not BCR/ABL in one CML case. The 3 children with EVI1 and BCR/ABL positive CML survived 20, 13 and 14 months, respectively, without recurrence. The child with EVI1 and BCR/ABL positive ALL failed to achieve complete remission after the first course of treatment and discontinued further treatment. CONCLUSIONS: Co-expression of EVI1 and BCR/ABL fusion gene can be found in childhood CML and ALL. The relatively rare leukemia has not significant difference respect to clinical characteristics. Prognosis of the disease needs to be determined by clinical studies with a larger sample size.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes abl , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proto-Oncogenes/genética , Factores de Transcripción/genética , Niño , Femenino , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Masculino , Pronóstico , Estudios Retrospectivos
12.
Environ Sci Pollut Res Int ; 31(3): 3425-3434, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123771

RESUMEN

BACKGROUND: Night shift workers are more susceptible to circadian rhythm disturbances due to their prolonged exposure to nighttime light. This exposure during abnormal periods causes inappropriate suppression of melatonin synthesis and secretion in the pineal gland, thereby disrupting circadian rhythms. While it is believed that nocturnal light exposure is involved in suppressing melatonin secretion, research findings in this area have been inconsistent. METHODS: Thirteen publications retrieved from PubMed and Web of Science databases were included to compare the differences between night shift workers and controls using aggregated mean differences (MD) and 95% confidence intervals (CI). RESULTS: After a comprehensive review, 13 publications were included and data on urinary melatonin metabolite 6-sulfameoxymelatonin(aMT6s) were collected for meta-analysis. The results showed that the morning urinary aMT6s levels were significantly lower in the exposed group than in the non-exposed group (MD = -3.69, 95%CI = (-5.41, -1.98), P < 0.0001), with no significant heterogeneity among the original studies (I2 = 42%, P = 0.13). In addition, night shift workers had significantly lower mean levels of 24-h urinary aMT6s than day shift workers (MD = -3.38, 95%CI = (-4.27, -2.49), P < 0.00001, I2 = 0). Nocturnal light was correlated with nocturnal urine aMT6s secretion and inhibited nocturnal aMT6s secretion (MD = -11.68, 95%CI = (-15.70, -7.67), P < 0.00001, I2 = 0). Additionally, nocturnal light inhibited the secretion of melatonin in the blood, with no significant heterogeneity between studies (MD = -11.37, 95%CI = (-15.41, -7.33), P < 0.00001, I2 = 0). CONCLUSION: The findings of this study indicate that exposure to nocturnal light among night shift workers leads to inhibition of melatonin secretion.


Asunto(s)
Melatonina , Humanos , Melatonina/metabolismo , Ritmo Circadiano , Luz
13.
J Food Sci ; 89(6): 3469-3483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720586

RESUMEN

Pyracantha fortuneana (P. fortuneana) fruit is a wild fruit that is popular because of its delicious taste and numerous nutrients, and phenolic compounds are considered to be the main bioactive components in P. fortuneana fruits. However, the relationship between phenolic compounds and their antioxidant and tyrosinase (TYR) inhibitory activities during the ripening process is still unclear. The study compared the influence of the five developmental stages on the accumulation of phenolic compounds, antioxidant activity, and TYR inhibitory activity in the fruits of P. fortuneana. The compounds were identified by offline two-dimensional liquid chromatography-electrochemical detection (2D-LC-ECD) combined with liquid chromatography-tandem mass spectrometry, and the main active ingredients were quantified. The results showed that stage II had higher total phenolic and flavonoid content, as well as higher antioxidant and TYR inhibitory activity, but the total anthocyanin content was lowest at this stage. A total of 30 compounds were identified by 2D-LC-ECD. Orthogonal partial least squares discriminant analysis screened out six major potential markers, including phenolic acids, procyanidins, and flavonoids. In addition, it was found that caffeoylquinic acids, procyanidins, and flavonoids were higher in stage II than in stages I, III, IV, and V, whereas anthocyanins accumulated gradually from stages III to V. Therefore, this study suggests that the changes in antioxidant and TYR inhibitory activities of P. fortuneana during the five developmental stages may be due to the transformation of procyanidins, caffeoylquinic acids, and phenolic glycosides into other forms during the fruit maturation process. Practical Application: Differences in chemical constituents, antioxidant, and tyrosinase inhibitory activities in fruit maturity stages of P. fortuneana were elucidated to provide reference for rational harvesting and utilization of the fruits and their bioactive components. These findings are expected to provide a comprehensive assessment of the bioactive profile and guide the food industrial production.


Asunto(s)
Antioxidantes , Frutas , Monofenol Monooxigenasa , Fenoles , Pyracantha , Frutas/química , Antioxidantes/análisis , Antioxidantes/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Fenoles/análisis , Pyracantha/química , Flavonoides/análisis , Espectrometría de Masas en Tándem/métodos , Inhibidores Enzimáticos/farmacología , Proantocianidinas/farmacología , Proantocianidinas/análisis , Antocianinas/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cromatografía Liquida/métodos
14.
J Ethnopharmacol ; 321: 117432, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY: This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS: We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS: According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS: We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Medicamentos Herbarios Chinos , Osteoartritis , Humanos , Inflamasomas , Medicina Tradicional China , Proteína con Dominio Pirina 3 de la Familia NLR , Artritis Reumatoide/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico
15.
J Ethnopharmacol ; 334: 118463, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908493

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY: This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS: Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-ß by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS: WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-ß by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS: Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.

16.
Nat Commun ; 15(1): 5040, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866786

RESUMEN

Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.

17.
Adv Mater ; 36(24): e2313752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38576272

RESUMEN

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

18.
Nat Genet ; 56(6): 1235-1244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714866

RESUMEN

Cauliflower (Brassica oleracea L. var. botrytis) is a distinctive vegetable that supplies a nutrient-rich edible inflorescence meristem for the human diet. However, the genomic bases of its selective breeding have not been studied extensively. Herein, we present a high-quality reference genome assembly C-8 (V2) and a comprehensive genomic variation map consisting of 971 diverse accessions of cauliflower and its relatives. Genomic selection analysis and deep-mined divergences were used to explore a stepwise domestication process for cauliflower that initially evolved from broccoli (Curd-emergence and Curd-improvement), revealing that three MADS-box genes, CAULIFLOWER1 (CAL1), CAL2 and FRUITFULL (FUL2), could have essential roles during curd formation. Genome-wide association studies identified nine loci significantly associated with morphological and biological characters and demonstrated that a zinc-finger protein (BOB06G135460) positively regulates stem height in cauliflower. This study offers valuable genomic resources for better understanding the genetic bases of curd biogenesis and florescent development in crops.


Asunto(s)
Brassica , Domesticación , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica , Brassica/genética , Genómica/métodos , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Dominio MADS/genética
19.
J Phys Chem B ; 127(2): 514-519, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36598839

RESUMEN

Electrostatic interactions are key determinants of protein structure, dynamics, and function. Since protein electrostatics are nonuniform, assessment of the internal electric fields (EFs) of proteins requires spatial resolution at the amino acid residue level. In this regard, vibrational Stark spectroscopy, in conjunction with various unnatural amino acid-based vibrational probes, has become a common method for site-specific interrogation of protein EFs. However, application of this method is often limited to proteins with relatively high solubility, due to the intrinsically low oscillator strength of vibrational transitions. Therefore, it would be useful to develop an alternative method that can overcome this limitation. To this end, we show that, using solvatochromic study and molecular dynamics simulations, the frequency of maximum emission intensity of the fluorophore of 4-cyanotryptophan (4CN-Trp), 3-methyl-1H-indole-4-carbonitrile, exhibits a linear dependence on the local EF. Since the absorption and emission spectra of 4CN-Trp are easily distinguishable from those of naturally occurring aromatic amino acids, we believe that this linear relationship provides an easier and more sensitive means to determine the local EF of proteins.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Colorantes Fluorescentes/química , Proteínas/química , Electricidad , Triptófano/química , Electricidad Estática
20.
J Phys Chem B ; 127(31): 6999-7003, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37525395

RESUMEN

Previously, several studies have shown that, for a set of structurally related nitrile compounds, there could be a linear relationship between the total charge on the nitrile group (qCN) and its stretching frequency (νCN). However, it is unclear whether the corresponding frequency and charge properties of structurally different nitrile compounds can be described by a single linear νCN-qCN relationship. Herein, we compute the qCN magnitudes of a large number of nitrile-containing molecules whose νCN values cover a spectral range of ca. 200 cm-1 and are measured under different experimental conditions. Our results reveal that νCN indeed exhibits a linear dependence on qCN, with a slope of 637 ± 30 cm-1/charge. Because the nitrile moiety is a commonly used building block in electronic donor-acceptor (D-A) molecular systems, we believe that this linear relationship will find utility in a wide range of applications where such D-A constructs are used, such as in organic photovoltaic assemblies. In addition, we apply this linear relationship to characterize the degree of charge transfer upon photoexcitation of two indole derivatives, 5-cyanoindole and 6-cyanoindole, and are able to show that in both cases, the fluorescence emission arises from a charge-transfer or La state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA