Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Int Microbiol ; 26(2): 327-341, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36336729

RESUMEN

BACKGROUND: Staphylococcus arlettae is a rarely reported coagulase-negative staphylococcus (CoNS) isolated from infected humans and livestock. Observing phage-bacteria interaction could improve the understanding of bacterial pathogenetic mechanisms, providing foundational evidence for phage therapy or phage detection. Herein, we aimed to characterise and annotate a novel bacteriophage, vB_SarS_BM31 (BM31), specific to S. arlettae. This bacteriophage was isolated from a milk sample associated with bovine mastitis and collected in the Sichuan Province, China. RESULTS: The BM31 genome comprised a linear double-stranded DNA of 42,271 base pair in length with a G + C content of 34.59%. A total of 65 open reading frames (ORFs) were assembled from phage DNA, of which 29 were functionally annotated. These functional genes were divided into four modules: the structural, DNA packing and replication, lysis, and lysogeny modules. Holin (ORF25), lysin (ORF26), and integrase (ORF28) were located closely in the entire BM31 genome and were important for lyse or lysogeny cycle of BM31. The phage was identified as a temperate phage according to whole genome analysis and life cycle assay, with basic biological characteristics such as small burst size, short latency period, and narrow host range, consistent with the characteristics of the family Siphoviridae, subcluster B14 of the Staphylococcus bacteriophage. CONCLUSIONS: The present isolation and characterisation of BM31 contributes to the Staphylococcus bacteriophage database and provides a theoretical foundation for its potential applications. To the best of our knowledge, BM31 is the only shared and completely reported phage against S. arlettae in the entire public database.


Asunto(s)
ADN Viral , Genoma Viral , Animales , Bovinos , Femenino , Humanos , Análisis de Secuencia de ADN , ADN Viral/genética , ADN Viral/química , Staphylococcus/genética , Fagos de Staphylococcus/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36982925

RESUMEN

Neurotropic viruses severely damage the central nervous system (CNS) and human health. Common neurotropic viruses include rabies virus (RABV), Zika virus, and poliovirus. When treating neurotropic virus infection, obstruction of the blood-brain barrier (BBB) reduces the efficiency of drug delivery to the CNS. An efficient intracerebral delivery system can significantly increase intracerebral delivery efficiency and facilitate antiviral therapy. In this study, a rabies virus glycopeptide (RVG) functionalized mesoporous silica nanoparticle (MSN) packaging favipiravir (T-705) was developed to generate T-705@MSN-RVG. It was further evaluated for drug delivery and antiviral treatment in a VSV-infected mouse model. The RVG, a polypeptide consisting of 29 amino acids, was conjugated on the nanoparticle to enhance CNS delivery. The T-705@MSN-RVG caused a significant decrease in virus titers and virus proliferation without inducing substantial cell damage in vitro. By releasing T-705, the nanoparticle promoted viral inhibition in the brain during infection. At 21 days post-infection (dpi), a significantly enhanced survival ratio (77%) was observed in the group inoculated with nanoparticle compared with the non-treated group (23%). The viral RNA levels were also decreased in the therapy group at 4 and 6 dpi compared with that of the control group. The T-705@MSN-RVG could be considered a promising system for CNS delivery for treating neurotropic virus infection.


Asunto(s)
Nanopartículas , Virus de la Rabia , Virosis , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Virus de la Rabia/fisiología , Glicopéptidos , Péptidos/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico
3.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409050

RESUMEN

(1) Background: In recent years, the porcine reproductive and respiratory syndrome virus (PRRSV) has become a virulent pathogen that has caused devastating diseases and economic losses worldwide in the swine industry. IRPS has attracted extensive attention in the field of virology. However, it is not clear that IRPS has an antiviral effect on PRRSV at gene and protein levels. (2) Methods: We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. Additionally, a microbiome was used to explore the effects of IRPS on gut microbes. (3) Results: IRPS significantly extenuated the pulmonary pathological lesions and inflammatory response. We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. In the porcine model, 1669 differentially expressed genes (DEGs) and 370 differentially expressed proteins (DEPs) were identified. Analysis of the DEG/DEP-related pathways indicated immune-system and infectious-disease (viral) pathways, such as the NOD-like receptor (NLR) signaling pathway, toll-like receptor (TLR) signaling pathway, and Influenza A-associated signaling pathways. It is noteworthy that IRPS can inhibit NLR-dependent gene expression, then reduce the inflammatory damage. IRPS could exert beneficial effects on the host by regulating the structure of intestinal flora. (4) Conclusions: The antiviral effect of IRPS on PRRSV can be directly achieved by omics techniques. Specifically, the antiviral mechanism of IPRS can be better elucidated by screening target genes and proteins using transcriptome and proteome sequencing, and then performing enrichment and classification according to DEGs and DEPs.


Asunto(s)
Isatis , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Antivirales , Polisacáridos , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/genética , Proteoma , Proteómica , Porcinos , Transcriptoma
4.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34299288

RESUMEN

(1) Background: Short-read sequencing allows for the rapid and accurate analysis of the whole bacterial genome but does not usually enable complete genome assembly. Long-read sequencing greatly assists with the resolution of complex bacterial genomes, particularly when combined with short-read Illumina data. However, it is not clear how different assembly strategies affect genomic accuracy, completeness, and protein prediction. (2) Methods: we compare different assembly strategies for Haemophilus parasuis, which causes Glässer's disease, characterized by fibrinous polyserositis and arthritis, in swine by using Illumina sequencing and long reads from the sequencing platforms of either Oxford Nanopore Technologies (ONT) or SMRT Pacific Biosciences (PacBio). (3) Results: Assembly with either PacBio or ONT reads, followed by polishing with Illumina reads, facilitated high-quality genome reconstruction and was superior to the long-read-only assembly and hybrid-assembly strategies when evaluated in terms of accuracy and completeness. An equally excellent method was correction with Homopolish after the ONT-only assembly, which had the advantage of avoiding hybrid sequencing with Illumina. Furthermore, by aligning transcripts to assembled genomes and their predicted CDSs, the sequencing errors of the ONT assembly were mainly indels that were generated when homopolymer regions were sequenced, thus critically affecting protein prediction. Polishing can fill indels and correct mistakes. (4) Conclusions: The assembly of bacterial genomes can be directly achieved by using long-read sequencing techniques. To maximize assembly accuracy, it is essential to polish the assembly with homologous sequences of related genomes or sequencing data from short-read technology.


Asunto(s)
Haemophilus parasuis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Animales , Genoma Bacteriano , Haemophilus parasuis/aislamiento & purificación , Filogenia , Alineación de Secuencia , Porcinos
5.
Fish Shellfish Immunol ; 92: 377-383, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31202969

RESUMEN

Vibrio mimicus (V. mimicus) is a significant pathogen in freshwater catfish, though knowledge of virulence determinants and effective vaccine is lacking. Multiplex genome editing by natural transformation (MuGENT) is an easy knockout method, which has successfully used in various bacteria except for V. mimicus. Here, we found V. mimicus strain SCCF01 can uptake exogenous DNA and insert it into genome by natural transformation assay. Subsequently, we exploited this property to make five mutants (△Hem, △TS1, △TS2, △TS1△TS2, and △II), and removed the antibiotic resistance marker by Flp-recombination. Finally, all of the mutants were identified by PCR and RT-PCR. The results showed that combination of natural transformation and FLP-recombination can be applied successfully to generate targeted gene disruptions without the antibiotic resistance marker in V. mimicus. In addition, the five mutants showed mutant could be inherited after several subcultures and a 668-fold decrease in the virulence to yellow catfish (Pelteobagrus fulvidraco). This study provides a convenient method for the genetic manipulation of V. mimicus. It will facilitate the identification and characterization of V. mimicus virulence factors and eventually contribute to a better understanding of V. mimicus pathogenicity and development of attenuated vaccine.


Asunto(s)
Vacunas Bacterianas/inmunología , Bagres , Enfermedades de los Peces/inmunología , Edición Génica/veterinaria , Técnicas de Inactivación de Genes/veterinaria , Vibrio mimicus/inmunología , Animales , Técnicas de Inactivación de Genes/métodos , Vacunas Atenuadas/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria
6.
Microb Pathog ; 110: 527-532, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28743597

RESUMEN

Rabbit haemorrhagic disease virus (RHDV) is a highly infectious pathogen that causes high mortality in wild and domestic rabbits. RHDV could be divided into two subtypes, classic RHDV and RHDVa, which present clear genetic, antigenic, and epidemiological differences. To further understand the nature of the diversity, we performed a genome-wide evolutionary study on the classic RHDV and RHDVa isolates. The results show that RHDV had experienced adaptive diversification with the dividing process of these subtypes. Furthermore, amino acid changes relevant to the adaptive diversification mainly cluster in viral capsid protein VP60. These results might be beneficial for a further understanding the function of VP60 and provide helpful hints for the genetic basis of RHDV emergence and re-emergence.


Asunto(s)
Adaptación Biológica , Variación Genética , Genoma Viral , Virus de la Enfermedad Hemorrágica del Conejo/genética , Animales , Proteínas de la Cápside/genética , Evolución Molecular , Genotipo , Virus de la Enfermedad Hemorrágica del Conejo/aislamiento & purificación , Conejos
7.
J Zoo Wildl Med ; 48(4): 1039-1048, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29297821

RESUMEN

Klebsiella pneumoniae is an important pathogen commonly associated with opportunistic infections. In this study, lung pathogenic K. pneumoniae (LPKP) was isolated and identified from suppurative pneumoniae in forest musk deer by conventional methods and by 16S ribosomal RNA sequence analysis. Median lethal dose and histopathologic analysis were used to demonstrate pathogenicity of the organism in mice. Furthermore, a draft genome of LPKP was sequenced, and its virulence genes were detected. One hundred and twenty-two virulence genes encoded determinant of capsule polysaccharide (CPS), lipopolysaccharide, fimbriae, outer membrane proteins, iron acquisition, and urease. In particular, 20 CPS-related genes were highly conserved in LPKP, K. pneumoniae U, K. pneumoniae NTUH-KP35, and K. pneumoniae KP-1. All of the strains were identified as capsular type K54. This is the first report of capsular type K54 K. pneumoniae causing suppurative pneumonia in an animal. The results of this study provided the basis for understanding the pathogenicity of LPKP and laid a foundation for the development of vaccines for the capsular type K54 K. pneumoniae disease.


Asunto(s)
Ciervos/microbiología , Infecciones por Klebsiella/veterinaria , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Enfermedades Pulmonares/veterinaria , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Enfermedades Pulmonares/microbiología , Ratones , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
8.
Can J Microbiol ; 62(3): 210-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26911308

RESUMEN

Classical swine fever virus (CSFV) is the causative agent of classical swine fever, which is a highly contagious disease of the domestic pig as well as wild boar. The proteins E(rns), E1, and E2 are components of the viral envelope membrane. They are also implicated in virus attachment and entry, replication, and (or) anti-immune response. Here, we studied the genetic variations of these envelope proteins in the evolution of CSFV. The results reveal that the envelope proteins underwent different evolutionary fates. In E(rns) and E1, but not E2, a number of amino acid sites experienced functional divergence. Furthermore, the diversification in E(rns) and E1 was generally episodic because the divergence-related changes of E1 only occurred with the separation of 2 major groups of CSFV and that of E(rns) took place with the division of 1 major group. The major divergence-related sites of E(rns) are located on one of the substrate-binding regions of the RNase domain and C-terminal extension. These functional domains have been reported to block activation of the innate immune system and attachment and entry into host cells, respectively. Our results may shed some light on the divergent roles of the envelope proteins.


Asunto(s)
Virus de la Fiebre Porcina Clásica/clasificación , Evolución Molecular , Proteínas del Envoltorio Viral/genética , Animales , Virus de la Fiebre Porcina Clásica/genética , Variación Genética , Filogenia , Porcinos
9.
Pol J Vet Sci ; 19(1): 41-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27096786

RESUMEN

African swine fever is an acute, febrile and highly virulent porcine disease causing serious economic losses worldwide. The pK205R protein of the African swine fever virus (ASFV) is largely expressed in the early stages of infection, which has given the K205R gene extensive attention. In this study, the ASFV K205R was cloned and expressed in Escherichia coli BL21 (DE3). Expression of histidine-tagged pK205R with a molecular mass of 44 kDa was determined by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Optimisation of culture conditions allowed induction of the recombinant protein with 0.4 mM Isopropyl ß-D-thiogalactoside (IPTG) at 37°C for 2 h. The protein existed in cellular supernatant and was purified using a Ni-NTA resin column. The purified protein was used to immunize rabbits four times to enable the production of polyclonal antibodies, and the antiserum titre was detected by ELISA. The results showed that the purified pK205R can react with ASFV positive serum specifically by Western blotting. The pK205R had high antigenicity, which indicated that pK205R could be used as an antigen for detection of ASFV-specific antibodies in ELISA testing, and the recombinant protein could contribute to further research of the action and structure of pK205R.


Asunto(s)
Virus de la Fiebre Porcina Africana/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Proteínas Virales/metabolismo , Virus de la Fiebre Porcina Africana/genética , Animales , Antígenos Virales , Clonación Molecular , Conejos , Proteínas Virales/genética
10.
Can J Microbiol ; 61(12): 948-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26485449

RESUMEN

Classical swine fever virus (CSFV) is the pathogen that causes a highly infectious disease of pigs and has led to disastrous losses to pig farms and related industries. The RNA-dependent RNA polymerase (RdRp) NS5B is a central component of the replicase complex (RC) in some single-stranded RNA viruses, including CSFV. On the basis of genetic variation, the CSFV RdRps could be clearly divided into 2 major groups and a minor group, which is consistent with the phylogenetic relationships and virulence diversification of the CSFV isolates. However, the adaptive signature underlying such an evolutionary profile of the polymerase and the virus is still an interesting open question. We analyzed the evolutionary trajectory of the CSFV RdRps over different timescales to evaluate the potential adaptation. We found that adaptive selection has driven the diversification of the RdRps between, but not within, CSFV major groups. Further, the major adaptive divergence-related sites are located in the surfaces relevant to the interaction with other component(s) of RC and the entrance and exit of the template-binding channel. These results might shed some light on the nature of the RdRp in virulence diversification of CSFV groups.


Asunto(s)
Virus de la Fiebre Porcina Clásica/enzimología , Peste Porcina Clásica/virología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Virus de la Fiebre Porcina Clásica/química , Virus de la Fiebre Porcina Clásica/clasificación , Virus de la Fiebre Porcina Clásica/genética , Variación Genética , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Porcinos , Proteínas Virales/química , Proteínas Virales/metabolismo
11.
Front Microbiol ; 15: 1362471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450173

RESUMEN

Since 2013, the porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), lineage 1.8 (NADC30-like PRRSV) has emerged and become widely prevalent in China. The NADC30-like PRRSV poses significant challenges for disease control, primarily because of its propensity for frequent mutations and recombinations. We successfully isolated and identified a NADC30-like strain, designated SCCD22, in Chengdu, Sichuan Province, China. We meticulously examined the genetic recombination properties and evaluated its pathogenicity in 28-day-old piglets. SCCD22 showed 93.02% nucleotide homology with the NADC30 PRRSV strain, and its non-structural protein 2 coding region showed the same 131 amino acid deletion pattern as that seen in NADC30. Furthermore, we identified two recombination events in SCCD22: one in the NSP2 region (1,028-3,290 nt), where it was highly similar to the JXA1-like strain GZ106; and another in the NSP10 ~ 12 region (9,985-12,279 nt), closely resembling the NADC30-like strain CY2-1604. Piglets infected with SCCD22 exhibited clinical symptoms such as elevated body temperature, prolonged fever, reduced appetite, and roughened fur. Postmortem examinations underscored the typical lung pathology associated with PRRSV, indicating that the lungs were the primary affected organs. Furthermore, extended viral shedding accompanied by progressive viremia was observed in the serum and nasal excretions of infected piglets. In summary, this study reports a domestic PRRSV recombination strain in the Sichuan Province that can provide critical insights into preventing and controlling PRRSV in this region.

13.
Front Microbiol ; 15: 1362316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450165

RESUMEN

Streptococcus suis serotype 2 (SS2) is a Gram-positive bacterium. It is a common and significant pathogen in pigs and a common cause of zoonotic meningitis in humans. It can lead to sepsis, endocarditis, arthritis, and pneumonia. If not diagnosed and treated promptly, it has a high mortality rate. The pan-genome of SS2 is open, and with an increasing number of genes, the core genome and accessory genome may exhibit more pronounced differences. Due to the diversity of SS2, the genes related to its virulence and resistance are still unclear. In this study, a strain of SS2 was isolated from a pig farm in Sichuan Province, China, and subjected to whole-genome sequencing and characterization. Subsequently, we conducted a Pan-Genome-Wide Association Study (Pan-GWAS) on 230 strains of SS2. Our analysis indicates that the core genome is composed of 1,458 genes related to the basic life processes of the bacterium. The accessory genome, consisting of 4,337 genes, is highly variable and a major contributor to the genetic diversity of SS2. Furthermore, we identified important virulence and resistance genes in SS2 through pan-GWAS. The virulence genes of SS2 are mainly associated with bacterial adhesion. In addition, resistance genes in the core genome may confer natural resistance of SS2 to fluoroquinolone and glycopeptide antibiotics. This study lays the foundation for further research on the virulence and resistance of SS2, providing potential new drug and vaccine targets against SS2.

14.
Front Microbiol ; 14: 1160433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138622

RESUMEN

Glaesserella parasuis is a gram-negative bacterium that causes fibrotic polyserositis and arthritis in pig, significantly affecting the pig industry. The pan-genome of G. parasuis is open. As the number of genes increases, the core and accessory genomes may show more pronounced differences. The genes associated with virulence and biofilm formation are also still unclear due to the diversity of G. parasuis. Therefore, we have applied a pan-genome-wide association study (Pan-GWAS) to 121 strains G. parasuis. Our analysis revealed that the core genome consists of 1,133 genes associated with the cytoskeleton, virulence, and basic biological processes. The accessory genome is highly variable and is a major cause of genetic diversity in G. parasuis. Furthermore, two biologically important traits (virulence, biofilm formation) of G. parasuis were studied via pan-GWAS to search for genes associated with the traits. A total of 142 genes were associated with strong virulence traits. By affecting metabolic pathways and capturing the host nutrients, these genes are involved in signal pathways and virulence factors, which are beneficial for bacterial survival and biofilm formation. This research lays the foundation for further studies on virulence and biofilm formation and provides potential new drug and vaccine targets against G. parasuis.

15.
Front Microbiol ; 14: 1241354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779701

RESUMEN

Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) lineage 8 was first detected in mainland China in 2006 and has since rapidly spread to become the primary epidemic strain in the country. In this study, samples such as lung tissue, hilar lymph nodes, abortion fetuses, and blood were collected from large-scale pig farms across 11 prefecture-level cities in Sichuan province between 2019 and 2020 for antigen detection and PRRS virus isolation. The antigen detection results indicated that the positive rate of HP-PRRSV (JXA1-Like strain) was 44.74% (51/114), NADC30-Like PRRSV was 17.54% (20/114), and classical PRRSV (VR2332-Like strain) was 37.72% (43/114). The predominant strain was HP-PRRSV. Positive samples were further inoculated into Marc-145 cells for virus isolation and identification, leading to the isolation of a new JXA1-Like PRRSV strain named SCSN2020. The strain was characterized by RT-qPCR, indirect immunofluorescence assay (IFA), plaque purification, electron microscopy, and whole genome sequencing. The total length of the viral genome was determined to be approximately 15,374 bp. A comparison of the SCSN2020 genome with VR2332 revealed that both strains had the same discontinuous 30-amino acid deletion on the Nsp2 gene. ORF5 genotyping classified the SCSN2020 strain as sublineage 8.7, with a whole genome sequence identity of 99.34% with JXA1. Furthermore, we evaluated the pathogenicity of the SCSN2020 strain in 28-day-old piglets and observed persistent fever from day 4 to day 10, weight loss started on day 7, dyspnea and severe lung lesions began started on day 14. The results of this study highlight the current PRRSV epidemic situation in Sichuan province and provide a scientific reference for subsequent prevention and control measures.

16.
Vet Sci ; 10(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37104434

RESUMEN

NADC34-like porcine reproductive and respiratory syndrome virus first appeared in 2017 in a herd of pigs in Liaoning Province, China. The virus was subsequently found in other provinces. Given the potential for this virus to cause an epidemic, rapid, sensitive, and specific detection of NADC34-like PRRSV is required. The virus' ORF5 gene was artificially synthesized based on a Chinese reference strain, and specific primers/probes for the ORF5 gene were designed. Then, the amplified target fragment was cloned into the pMD19-T vector, and a series of diluted recombinant plasmids were used to generate a standard curve. An optimized real-time TaqMan RT-PCR method was established. The method was highly specific for NADC34-like PRRSV, without cross-reactions with other non-targeted pig viruses. The detection limit of this assay was 101 copies/µL. The method had an efficiency of 98.8%, a squared regression value (R2) of 0.999, and showed a linear range of 103-108 copies/µL of DNA per reaction. This method was shown to be analytically specific and sensitive with a low intra- and inter-assay coefficient of variation (<1.40%). A total of 321 clinical samples were tested using the established method, and four were shown to be positive (1.24%). This study confirmed the existence of NADC34-like PRRSV and HP-PRRSV co-infection in Sichuan and provided a promising alternative tool for the rapid detection of NADC34-like PRRSV.

17.
Sci Rep ; 13(1): 10625, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391585

RESUMEN

Forest musk deer (Moschus berezovskii) are currently a threatened species under conservation, and the development of captive populations is restricted by health problems. To evaluate the application potential of interferon (IFN)-ω in the prevention and control of forest musk deer disease, 5 forest musk deer IFN-ω (fmdIFNω) gene sequences were successfully obtained by homologous cloning method for the first time. FmdIFNω5 was selected and recombinant fmdIFNω protein (rIFNω) was successfully expressed by pGEX-6P-1 plasmid and E. coli expression system. The obtained protein was used to stimulate forest musk deer lung fibroblasts cells FMD-C1 to determine its regulatory effect on interferon-stimulated genes (ISGs). In addition, an indirect ELISA method based on anti-rIFNω serum was established to detect endogenous IFN-ω levels in 8 forest musk deer. The results showed that there were 18 amino acid differences among the 5 fmdIFNω subtypes, all of which had the basic structure to exert the activity of type I IFN and were close to Cervus elaphus IFN-ω in the phylogenetic tree. The protein expressed was 48 kDa, and the transcription levels of all ISGs were increased in FMD-C1 cells stimulated by rIFNω, and the amount of transcription accumulation was time-dependent. Meanwhile, Anti-rIFNω serum of mice could react with both rIFNω and forest musk deer serum, and the OD450nm value of forest musk deer serum with the most obvious symptoms was the highest, suggesting that the level of natural IFN-ω in different forest musk deer could be monitored by the rIFNω-based ELISA method. These results indicate that fmdIFNω has the potential as an antiviral drug and an early indication of innate immunity, which is of great significance for the prevention and control of forest musk deer diseases.


Asunto(s)
Ciervos , Interferón Tipo I , Animales , Ratones , Escherichia coli/genética , Filogenia , Clonación Molecular , Rumiantes , Interferón Tipo I/genética , Bosques
18.
Nanomaterials (Basel) ; 12(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35564242

RESUMEN

Foodborne pathogens have become the subject of intense interest because of their high incidence and mortality worldwide. In the past few decades, people have developed many methods to solve this challenge. At present, methods such as traditional microbial culture methods, nucleic acid or protein-based pathogen detection methods, and whole-genome analysis are widely used in the detection of pathogenic microorganisms in food. However, these methods are limited by time-consuming, cumbersome operations or high costs. The development of nanopore sequencing technology offers the possibility to address these shortcomings. Nanopore sequencing, a third-generation technology, has the advantages of simple operation, high sensitivity, real-time sequencing, and low turnaround time. It can be widely used in the rapid detection and serotyping of foodborne pathogens. This review article discusses foodborne diseases, the principle of nanopore sequencing technology, the application of nanopore sequencing technology in foodborne pathogens detection, as well as its development prospects.

19.
J Vet Res ; 66(3): 289-295, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36349130

RESUMEN

Introduction: In May 2020, an outbreak of rabbit haemorrhagic disease 2 (RHD2) caused by the rabbit haemorrhagic disease virus 2 (RHDV2, GI.2) occurred in Sichuan, China. The acute onset and short disease course resulted in rabbit mortality as high as 42.86%. Currently, basic research on the aetiology and genetic characteristics of GI.2 is lacking in China. Material and Methods: Pathological changes in various tissues from infected rabbits were investigated and the viral genome was characterised. This study used RT-PCR, histopathology and scanning electron microscopy to identify the pathogen in samples from infected rabbits that had died. Phylogenetic trees were constructed based on whole genome sequence analysis, and recombination events were analysed. Results: RT-PCR identified the presence of GI.2. Histopathology revealed liver cell necrosis and haemorrhaging into lung alveoli. Electron microscopy demonstrated spherical GI.2 particles that were 40 nm in size. The gene sequence length of the isolate was 7,445 bp (GenBank accession number MW178244). A phylogenetic analysis based on the genome of the isolated strain and 60 reference strains showed that the isolate was grouped together with GI.2 strain MT586027.1 in a relatively independent sub-branch. The results of the recombination analysis showed that the strain was recombined from the MT586027.1 (major parent) and MN90145.1 (minor parent) strains, and recombination breakpoints were at locations in the 2858-5137 nt range. Conclusion: The results of this study extend our understanding of the molecular epidemiology of GI.2.

20.
Front Vet Sci ; 9: 1053198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36644533

RESUMEN

Background: Glässer's disease, caused by Haemophilus parasuis (HPS), is responsible for economic losses in the pig industry worldwide. However, the existing commercial vaccines offer poor protection and there are significant barriers to the development of effective vaccines. Methods: In the current study, we aimed to identify potential vaccine candidates and design a multi-epitope vaccine against HPS by performing pan-genomic analysis of 121 strains and using a reverse vaccinology approach. Results: The designed vaccine constructs consist of predicted epitopes of B and T cells derived from the outer membrane proteins of the HPS core genome. The vaccine was found to be highly immunogenic, non-toxic, and non-allergenic as well as have stable physicochemical properties. It has a high binding affinity to Toll-like receptor 2. In addition, in silico immune simulation results showed that the vaccine elicited an effective immune response. Moreover, the mouse polyclonal antibody obtained by immunizing the vaccine protein can be combined with different serotypes and non-typable Haemophilus parasuis in vitro. Conclusion: The overall results of the study suggest that the designed multi-epitope vaccine is a promising candidate for pan-prophylaxis against different strains of HPS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA