Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(8): 1389-1401.e18, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35344711

RESUMEN

The effectiveness of SARS-CoV-2 vaccines and therapeutic antibodies have been limited by the continuous emergence of viral variants and by the restricted diffusion of antibodies from circulation into the sites of respiratory virus infection. Here, we report the identification of two highly conserved regions on the Omicron variant receptor-binding domain recognized by broadly neutralizing antibodies. Furthermore, we generated a bispecific single-domain antibody that was able to simultaneously and synergistically bind these two regions on a single Omicron variant receptor-binding domain as revealed by cryo-EM structures. We demonstrated that this bispecific antibody can be effectively delivered to lung via inhalation administration and exhibits exquisite neutralization breadth and therapeutic efficacy in mouse models of SARS-CoV-2 infections. Importantly, this study also deciphered an uncommon and highly conserved cryptic epitope within the spike trimeric interface that may have implications for the design of broadly protective SARS-CoV-2 vaccines and therapeutics.


Asunto(s)
Vacunas contra la COVID-19 , Anticuerpos de Dominio Único , Administración por Inhalación , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Vacunas contra la COVID-19/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
2.
Plant Cell ; 34(6): 2140-2149, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35188193

RESUMEN

In plants, the biogenesis of small interfering RNA (siRNA) requires a family of RNA-dependent RNA polymerases that convert single-stranded RNA (ssRNA) into double-stranded RNA (dsRNA), which is subsequently cleaved into defined lengths by Dicer endonucleases. Here, we determined the structure of maize (Zea mays) RNA-DEPENDENT RNA POLYMERASE 2 (ZmRDR2) in the closed and open conformations. The core catalytic region of ZmRDR2 possesses the canonical DNA-dependent RNA polymerase (DdRP) catalytic sites, pointing to a shared RNA production mechanism between DdRPs and plant RDR-family proteins. Apo-ZmRDR2 adopts a highly compact structure, representing an inactive closed conformation. By contrast, adding RNA induced a significant conformational change in the ZmRDR2 Head domain that opened the RNA binding tunnel, suggesting this is an active elongation conformation of ZmRDR2. Overall, our structural studies trapped both the active and inactive conformations of ZmRDR2, providing insights into the molecular mechanism of dsRNA synthesis during plant siRNA production.


Asunto(s)
ARN Bicatenario , ARN Polimerasa Dependiente del ARN , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , ARN Bicatenario/genética , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/genética
3.
FASEB J ; 38(5): e23550, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466338

RESUMEN

Breast cancer is the most prevalent malignant tumor in women. Adriamycin (ADR) is a primary chemotherapy drug, but resistance limits its effectiveness. Ferroptosis, a newly identified cell death mechanism, involves the transferrin receptor (TFRC), closely linked with tumor cells. This study aimed to explore TFRC and ferroptosis's role in breast cancer drug resistance. Bioinformatics analysis showed that TFRC was significantly downregulated in drug-resistant cell lines, and patients with low TFRC expression might demonstrate a poor chemotherapeutic response to standard treatment. High expression of TFRC was positively correlated with most of the ferroptosis-related driver genes. The research findings indicate that ferroptosis markers were higher in breast cancer tissues than in normal ones. In chemotherapy-sensitive cases, Ferrous ion (Fe2+ ) and malondialdehyde (MDA) levels were higher than in resistant cases (all p < .05). TFRC expression was higher in breast cancer than in normal tissue, especially in the sensitive group (all p < .05). Cytological experiments showed increased hydrogen peroxide (H2 O2 ) after ADR treatment in both sensitive and resistant cells, with varying MDA changes (all p < .05). Elevating TFRC increased Fe2+ and MDA in ADR-resistant cells, enhancing their sensitivity to ADR. However, TFRC upregulation combined with ADR increased proliferation and invasiveness in resistant cell lines (all p < .05). In conclusion, ADR resistance to breast cancer is related to the regulation of iron ion-mediated ferroptosis by TFRC. Upregulation of TFRC in ADR-resistant breast cancer cells activates ferroptosis and reverses ADR chemotherapy resistance of breast cancer.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Doxorrubicina/farmacología , Receptores de Transferrina/genética , Transferrina
4.
Pediatr Res ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014239

RESUMEN

BACKGROUND: With the increase in the number of low birth weight infants, oxygen therapy is more widely used. However, chronic high-concentration oxygen environments lead to hyperoxic lung injury in children, which in turn leads to bronchopulmonary dysplasia (BPD). PGE1 is widely used in the clinic for its ability to inhibit inflammation and improve circulation. Therefore, we further investigated whether PGE-1 has a therapeutic effect on hyperoxic lung injury. METHODS: Hyperoxic lung injury model was adopted for investigating the interventional effects and underlying mechanisms of intraperitoneal injection of prostaglandin E1 (PGE-1) on hyperoxic lung injury in newborn rats via relevant experimental techniques, such as Diff-Quick staining, lung wet dry specific gravity measurements, HE staining, TUNEL staining, ELISA, and the Western blot method. RESULTS: Inflammatory and apoptotic cells in the PGE1-treated group were significantly lower than those in the hyperoxic lung injury group (p < 0.05); and the contents of IL-1ß, IL-6 and TNF-α in the treated group were significantly lower than those in the model group (p < 0.05). Caspase-3, CHOP, GRP78 and Bcl-2/Bax protein expression in the treatment group was significantly lower than that in the model group (p < 0.05). CONCLUSION: PGE-1 has a therapeutic effect on hyperoxic lung injury in neonatal rats. IMPACT: PGE1 treatment reduces levels of inflammatory cells and pro-inflammatory cytokines and decreases apoptosis. PGE1 has a therapeutic effect on BPD through the endoplasmic reticulum stress pathway. This study offers the possibility of PGE1 for the treatment of BPD.

5.
Nature ; 556(7702): 520-524, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670288

RESUMEN

Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.


Asunto(s)
Arginina/análogos & derivados , Dihidropiridinas/química , Dihidropiridinas/metabolismo , Ácidos Difenilacéticos/química , Ácidos Difenilacéticos/metabolismo , Neuropéptido Y/metabolismo , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/química , Arginina/química , Arginina/metabolismo , Arginina/farmacología , Sitios de Unión , Cristalografía por Rayos X , Dihidropiridinas/farmacología , Ácidos Difenilacéticos/farmacología , Humanos , Fosfatos de Inositol/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Neuropéptido Y/química , Neuropéptido Y/farmacología , Resonancia Magnética Nuclear Biomolecular , Compuestos de Fenilurea/farmacología , Unión Proteica , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Angew Chem Int Ed Engl ; 63(18): e202402291, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38380542

RESUMEN

Developing combination chemotherapy systems with high drug loading efficiency at predetermined drug ratios to achieve a synergistic effect is important for cancer therapy. Herein, a polymeric dual-drug nanoparticle composed of a Pt(IV) prodrug derived from oxaliplatin and a mitochondria-targeting cytotoxic peptide is constructed through emulsion interfacial polymerization, which processes high drug loading efficiency and high biocompatibility. The depolymerization of polymeric dual-drug nanoparticle and the activation of Pt prodrug can be effectively triggered by the acidic tumor environment extracellularly and the high levels of glutathione intracellularly in cancer cells, respectively. The utilization of mitochondria-targeting peptide can inhibit ATP-dependent processes including drug efflux and DNA damage repair. This leads to increased accumulation of Pt-drugs within cancer cells. Eventually, the polymeric dual-drug nanoparticle demonstrates appreciable antitumor effects on both cell line derived and patient derived xenograft lung cancer model. It is highly anticipated that the polymeric dual-or multi-drug systems can be applied for combination chemotherapy to achieve enhanced anticancer activity and reduced side effects.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Péptidos/uso terapéutico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos
7.
Nat Chem Biol ; 17(12): 1230-1237, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34556863

RESUMEN

Cholecystokinin receptors, CCKAR and CCKBR, are important neurointestinal peptide hormone receptors and play a vital role in food intake and appetite regulation. Here, we report three crystal structures of the human CCKAR in complex with different ligands, including one peptide agonist and two small-molecule antagonists, as well as two cryo-electron microscopy structures of CCKBR-gastrin in complex with Gi2 and Gq, respectively. These structures reveal the recognition pattern of different ligand types and the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation process of cholecystokinin receptors is proposed. Combined with pharmacological data, our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential therapeutics targeting cholecystokinin receptors.


Asunto(s)
Devazepida/química , Receptores de Colecistoquinina/química , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Cristalización , Humanos , Ácidos Indolacéticos/química , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores de Colecistoquinina/genética , Relación Estructura-Actividad , Tiazoles/química
8.
Mol Ther ; 30(8): 2785-2799, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35462042

RESUMEN

The inefficient tumor penetration of therapeutic antibodies has hampered their effective use in treating solid tumors. Here, we report the identification of a fully human single-domain antibody (UdAb), designated as n501, targeting the oncofetal antigen 5T4. The high-resolution crystal structure indicates that n501 adopts a compact structure very similar to that of camelid nanobodies, and binds tightly to all eight leucine-rich repeats of 5T4. Furthermore, the UdAb n501 exhibits exceptionally high stability, with no apparent activity changes over 4 weeks of storage at various temperatures. Importantly, the UdAb-based antibody-drug conjugate (n501-SN38) showed much deeper tumor penetration, significantly higher tumor uptake, and faster accumulation at tumor sites than conventional IgG1-based antibody-drug conjugate (m603-SN38), resulting in improved tumor inhibition. These results highlight the potential of UdAb-based antibody-drug conjugates as a potential class of antitumor therapeutics with characteristics of high stability and strong tumor penetration for the effective treatment of solid tumors.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Anticuerpos de Dominio Único , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico
9.
Proc Natl Acad Sci U S A ; 117(7): 3603-3609, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015133

RESUMEN

5-Methylcytosine (m5C) is a RNA modification that exists in tRNAs and rRNAs and was recently found in mRNAs. Although it has been suggested to regulate diverse biological functions, whether m5C RNA modification influences adult stem cell development remains undetermined. In this study, we show that Ypsilon schachtel (YPS), a homolog of human Y box binding protein 1 (YBX1), promotes germ line stem cell (GSC) maintenance, proliferation, and differentiation in the Drosophila ovary by preferentially binding to m5C-containing RNAs. YPS is genetically demonstrated to function intrinsically for GSC maintenance, proliferation, and progeny differentiation in the Drosophila ovary, and human YBX1 can functionally replace YPS to support normal GSC development. Highly conserved cold-shock domains (CSDs) of YPS and YBX1 preferentially bind to m5C RNA in vitro. Moreover, YPS also preferentially binds to m5C-containing RNAs, including mRNAs, in germ cells. The crystal structure of the YBX1 CSD-RNA complex reveals that both hydrophobic stacking and hydrogen bonds are critical for m5C binding. Overexpression of RNA-binding-defective YPS and YBX1 proteins disrupts GSC development. Taken together, our findings show that m5C RNA modification plays an important role in adult stem cell development.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Óvulo/crecimiento & desarrollo , ARN/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Humanos , Ovario/metabolismo , Óvulo/metabolismo , ARN/genética , Células Madre/citología , Células Madre/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
10.
J Am Chem Soc ; 144(13): 5702-5707, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35212528

RESUMEN

The rapid emergence and spread of escaping mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly challenged our efforts in fighting against the COVID-19 pandemic. A broadly neutralizing reagent against these concerning variants is thus highly desirable for the prophylactic and therapeutic treatments of SARS-CoV-2 infection. We herein report a covalent engineering strategy on protein minibinders for potent neutralization of the escaping variants such as B.1.617.2 (Delta), B.1.617.1 (Kappa), and B.1.1.529 (Omicron) through in situ cross-linking with the spike receptor binding domain (RBD). The resulting covalent minibinder (GlueBinder) exhibited enhanced blockage of RBD-human angiotensin-converting enzyme 2 (huACE2) interaction and more potent neutralization effect against the Delta variant than its noncovalent counterpart as demonstrated on authentic virus. By leveraging the covalent chemistry against escaping mutations, our strategy may be generally applicable for restoring and enhancing the potency of neutralizing antibodies to SARS-CoV-2 and other rapidly evolving viral targets.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
Int J Cancer ; 151(5): 717-729, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35612583

RESUMEN

Pulmonary sarcomatoid carcinoma (PSC) is a unique form of poorly differentiated nonsmall cell lung cancer (NSCLC) and is notorious for its highly malignant nature and dismal prognosis. To introduce effective treatment for PSC patients, precise subtyping of PSC is demanding. In our study, TTF-1 and P40 immunohistochemistry (IHC) staining were applied to 56 PSC patients with multiomics data. According to IHC results, we categorized these patients into three subgroups and profiled their molecular contexture using bioinformatic skills. IHC results classified these patients into three subgroups: TTF-1 positive subgroup (n = 27), P40 positive subgroup (n = 15) and double-negative subgroup (n = 14). Spindle cell samples accounted for 35.71% (5/14) of double-negative patients, higher than others (P = .034). The three subgroups were heterogeneous in the genomic alteration spectrum, showing significant differences in the RTK/RAS pathway (P = .004) and the cell cycle pathway (P = .030). The methylation profile of the double-negative subgroup was between the other two subgroups. In similarity analysis, the TTF-1 and p40 subgroups were closely related to LUAD and LUSC, respectively. The TTF-1 positive subgroup had the highest leukocyte fraction (LF) among several cancer types, and the tumor mutation burden (TMB) of the p40 positive subgroup ranked third in the TMB list, suggesting the applicability of immunotherapy for PSC. The study established a new subtyping method of PSC based on IHC results and reveals three subgroups with distinct molecular features, providing evidence for refined stratification in the treatment of PSC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología
12.
Acta Pharmacol Sin ; 43(4): 954-962, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34234269

RESUMEN

Phage display technology allows for rapid selection of antibodies from the large repertoire of human antibody fragments displayed on phages. However, antibody fragments should be converted to IgG for biological characterizations and affinity of antibodies obtained from phage display library is frequently not sufficient for efficient use in clinical settings. Here, we describe a new approach that combines phage and mammalian cell display, enabling simultaneous affinity screening of full-length IgG antibodies. Using this strategy, we successfully obtained a novel germline-like anti-TIM-3 monoclonal antibody named m101, which was revealed to be a potent anti-TIM-3 therapeutic monoclonal antibody via in vitro and in vivo experiments, indicating its effectiveness and power. Thus, this platform can help develop new monoclonal antibody therapeutics with high affinity and low immunogenicity.


Asunto(s)
Anticuerpos Monoclonales , Bacteriófagos , Animales , Técnicas de Visualización de Superficie Celular , Células Germinativas , Humanos , Mamíferos , Biblioteca de Péptidos
13.
J Integr Plant Biol ; 64(12): 2385-2395, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36149781

RESUMEN

DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Proteínas Portadoras/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Arabidopsis/metabolismo , Silenciador del Gen , ADN/metabolismo
14.
Plant Cell ; 30(1): 167-177, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233856

RESUMEN

In chromatin, histone methylation affects the epigenetic regulation of multiple processes in animals and plants and is modulated by the activities of histone methyltransferases and histone demethylases. The jumonji domain-containing histone demethylases have diverse functions and can be classified into several subfamilies. In humans, the jumonji domain-containing Lysine (K)-Specific Demethylase 5/Jumonji and ARID Domain Protein (KDM5/JARID) subfamily demethylases are specific for histone 3 lysine 4 trimethylation (H3K4me3) and are important drug targets for cancer treatment. In Arabidopsis thaliana, the KDM5/JARID subfamily H3K4me3 demethylase JUMONJI14 (JMJ14) plays important roles in flowering, gene silencing, and DNA methylation. Here, we report the crystal structures of the JMJ14 catalytic domain in both substrate-free and bound forms. The structures reveal that the jumonji and C5HC2 domains contribute to the specific recognition of the H3R2 and H3Q5 to facilitate H3K4me3 substrate specificity. The critical acidic residues are conserved in plants and animals with the corresponding mutations impairing the enzyme activity of both JMJ14 and human KDM5B, indicating a common substrate recognition mechanism for KDM5 subfamily demethylases shared by plants and animals and further informing efforts to design targeted inhibitors of human KDM5.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Dominio Catalítico , Secuencia Conservada , Humanos , Lisina/metabolismo , Metilación , Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
15.
BMC Med ; 18(1): 232, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32843031

RESUMEN

BACKGROUND: Tumor mutational burden (TMB) has both prognostic value in resected non-small cell lung cancer (NSCLC) patients and predictive value for immunotherapy response. However, TMB evaluation by whole-exome sequencing (WES) is expensive and time-consuming, hampering its application in clinical practice. In our study, we aimed to construct a mutational burden estimation model, with a small set of genes, that could precisely estimate WES-TMB and, at the same time, has prognostic and predictive value for NSCLC patients. METHODS: TMB estimation model was trained based on genomic data from 1056 NSCLC samples from The Cancer Genome Atlas (TCGA). Validation was performed using three independent cohorts, including Rizvi cohort and our own Asian cohorts, including 89 early-stage and n late-stage Asian NSCLC patients, respectively. TCGA data were obtained on September 3, 2018. The two Asian cohort studies were performed from September 1, 2018, to March 5, 2019. Pearson's correlation coefficient was used to assess the performance of estimated TMB with WES-TMB. The Kaplan-Meier survival analysis was applied to evaluate the association of estimated TMB with disease-free survival (DFS), overall survival (OS), and response to anti-programmed death-1 (PD-1) and anti-programmed death-ligand 1 (PD-L1) therapy. RESULTS: The estimation model, consisted of only 23 genes, correlated well with WES-TMB both in the training set of TCGA cohort and validation set of Rizvi cohort and our own Asian cohort. Estimated TMB by the 23-gene panel was significantly associated with DFS and OS in patients with early-stage NSCLC and could serve as a predictive biomarker for anti-PD-1 and anti-PD-L1 treatment response. CONCLUSIONS: The 23-gene panel, instead of WES or the currently used panel-based methods, could be used to assess the WES-TMB with a high relevance. This customized targeted sequencing panel could be easily applied into clinical practice to predict the immunotherapy response and prognosis of NSCLC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Inmunoterapia/métodos , Neoplasias Pulmonares/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Mutación , Pronóstico , Análisis de Supervivencia
16.
Surg Innov ; 27(1): 5-10, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31631789

RESUMEN

This study described a technique for the reconstruction of large lateral thoracic defects after local advanced breast cancer resection that allows for complete cover of the defect and primary closure of the donor site. The authors performed reconstruction using the newly designed KISS flap in 2 women for coverage of their large skin defect (15 × 13 cm each) following mastectomies with extensive tissue resection. The KISS flap consisting of 2 skin islands (marked Flap A and Flap B; 15 × 6 cm each) was designed and transferred to the thoracic defect through the subcutaneous tunnel, and based on the same vessel. The flap covered properly without causing excessive tension and allowed primary closure of chest wound and donor defect. The security it brings is comparable with that of classical radical mastectomy, and its success rate is similar to that of single skin flap transplantation. Compared with the conventional pedicled latissimus-dorsi-musculocutaneous flap, we believe that the donor zone tension decreases, wherein the KISS flaps can reduce the incidence of incision dehiscence and nonhealing complications to some extent. The study reported good results from this technique and discussed the techniques that referenced previous reports.


Asunto(s)
Neoplasias de la Mama/cirugía , Mastectomía/métodos , Procedimientos de Cirugía Plástica/métodos , Colgajos Quirúrgicos/cirugía , Pared Torácica/cirugía , Adulto , Femenino , Humanos , Persona de Mediana Edad , Músculos Superficiales de la Espalda/trasplante
17.
J Cell Biochem ; 120(7): 12039-12050, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30805963

RESUMEN

BACKGROUND: Breast cancer (BC) risk, development, and prognosis were closely related to obesity, diabetes mellitus, and metabolic syndrome. Protein tyrosine phosphatase, non-receptor type 1 (PTPN1) located on chromosome 20q13, could negatively regulate insulin and leptin signaling. In this study, we determined the association of PTPN1 polymorphisms with BC risk. METHODS: We analyzed the distribution of 11 selected PTPN1 single nucleotide polymorphisms in Chinese female patients with BC (n = 953) and healthy controls (n = 963) based on a multicenter case-control study. The association of PTPN1 genotypes and haplotypes frequencies with BC risk were determined by logistic regression analysis. Analyses were further stratified by body mass index (BMI), waist-hip rate (WHR), diabetes mellitus history, and fasting plasma glucose level. The eQTL (expression Quantitative Trait Loci) analysis for PTPN1 was conducted by GTEx database. RESULTS: There were significant differences between BC cases and control groups in menopausal status, number of births, and BMI. Four single nucleotide polymorphisms (SNPs; rs3215684, rs3787345, rs718049, and rs718050) decreased overall BC risk, and other seven SNPs showed no significant association with BC risk. In multivariate analysis, BMI and rs3215684 DT + DD genotype were identified as independent risk factors for BC, and mutated genotypes of rs3215684 were correlated with increased PTPN1 expression. There are no haplotypes showed different frequencies between cases and controls. In the stratified analysis, rs2206656 showed a significant association with decreased BC risk in the subgroup of BMI ≤ 24 kg/m 2 , while rs3215684 and rs718049 showed lower BC risk in the subgroup of WHR > 0.85. Seven SNPs showed lower BC risk in the subgroup with diabetes mellitus history and/or fasting plasma glucose level ≥ 7 mM, while rs754118 decreased BC risk in the subgroup of fasting plasma glucose level < 7 mM. CONCLUSION: Our findings suggest that PTPN1 SNPs associated with BC susceptibility in Chinese females, which also suggested a novel mechanism between obesity, diabetes mellitus, and BC risk.

18.
Acta Pharmacol Sin ; 40(4): 563-568, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29941870

RESUMEN

The chemokine receptor CCR5 is an important anti-HIV (human immunodeficiency virus) drug target owning to its pivotal role in HIV-1 viral entry as a co-receptor. Here, we present a 2.9 Å resolution crystal structure of CCR5 bound to PF-232798, a second-generation oral CCR5 antagonist currently in phase II clinical trials. PF-232798 and the marketed HIV drug maraviroc share a similar tropane scaffold with different amino (N)- and carboxyl (C)- substituents. Comparison of the CCR5-PF-232798 structure with the previously determined structure of CCR5 in complex with maraviroc reveals different binding modes of the two allosteric antagonists and subsequent conformational changes of the receptor. Our results not only offer insights into the phenomenon that PF-232798 has higher affinity and alternative resistance profile to maraviroc, but also will facilitate the design of new anti-HIV drugs.


Asunto(s)
Fármacos Anti-VIH/farmacología , Compuestos de Azabiciclo/farmacología , Imidazoles/farmacología , Receptores CCR5/metabolismo , Fármacos Anti-VIH/química , Compuestos de Azabiciclo/química , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Imidazoles/química , Modelos Moleculares , Receptores CCR5/química , Tropanos
19.
Mediators Inflamm ; 2019: 4312016, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281227

RESUMEN

BACKGROUND: Plasma cell mastitis (PCM) is one of the most frequently encountered inflammatory diseases of the nonlactating breast. However, its pathogenesis has remained unknown. METHODS: In this study, we observed the ultrastructure changes of PCM by a transmission electron microscope. The transcriptome expression difference of exosomes was detected by RNA-Seq; then, we confirmed the key difference genes by western blot and immunohistochemistry. Finally, we established the mouse PCM model by tissue homogenate injection to validate the role of exosomes on the progression of PCM. RESULTS: The analysis of the exosomal transcriptome expression difference between PCM and normal mammary tissues using RNA-Seq showed the differential genes and enrichment pathways involved in the course of PCM. The decreased HSP90AA1 and EEF2, excessive production of p-AKT, and p-mTOR were consistent with clinical specimens. Inhibition of exosome secretion significantly inhibited inflammatory cell infiltration, and the mammary duct had maintained a better structure in the PCM mouse model. CONCLUSION: Our results revealed the role of exosomes acting as critical signal introduction facilitators in the progression of plasma cell mastitis and identified potential key genes in the regulation of this process. These results will help to dissect the molecular mechanism of PCM and provide therapeutic targets.


Asunto(s)
Exosomas/metabolismo , Mastitis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Plasmáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Animales , Femenino , Humanos , Inmunohistoquímica , Mastitis/patología , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Células Plasmáticas/metabolismo , Células Plasmáticas/ultraestructura , Transducción de Señal/fisiología , Transcriptoma/genética , Adulto Joven
20.
Angew Chem Int Ed Engl ; 58(44): 15747-15751, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31433101

RESUMEN

An electrochemical method has been developed to achieve arylation of electron-deficient arenes through reductive activation. Various electron-deficient arenes and aryldiazonium tetrafluoroborates are amenable to this transformation within the conditions of an undivided cell, providing the desired products in up to 92 % yield. Instead of preparing diazonium reagents, these reactions can begin from anilines, and they can be carried out in one pot. Electron paramagnetic resonance studies indicate that cathodic reduction of quinoxaline occurs using the transformation. Moreover, cyclic voltammetry indicates that both quinoxaline and aryl diazonium salt have relatively low reduction potentials, which suggests they can be activated through reduction during the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA