Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 532(7597): 107-11, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26982723

RESUMEN

Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.


Asunto(s)
Diferenciación Celular , Estudios de Asociación Genética/métodos , Haploidia , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Autorrenovación de las Células , Separación Celular , Tamaño de la Célula , Cromosomas Humanos X/genética , Diploidia , Regulación hacia Abajo/genética , Eliminación de Gen , Estratos Germinativos/citología , Humanos , Cariotipificación , Oocitos/metabolismo , Fosforilación Oxidativa , Partenogénesis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Inactivación del Cromosoma X/genética
2.
Stem Cells ; 30(12): 2700-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22987393

RESUMEN

The immunogenicity of human pluripotent stem cells plays a major role in their potential use in the clinic. We show that, during their reprogramming, human-induced pluripotent stem (iPS) cells downregulate expression of human leukocyte antigen (HLA)-A/B/C and ß2 microglobulin (ß2M), the two components of major histocompatibility complex-I (MHC-I). MHC-I expression in iPS cells can be restored by differentiation or treatment with interferon-gamma (IFNγ). To analyze the molecular mechanisms that regulate the expression of the MHC-I molecules in human iPS cells, we searched for correlation between the expression of HLA-A/B/C and ß2M and the expression of transcription factors that bind to the promoter of these genes. Our results show a significant positive correlation between MHC-I expression and expression of the nuclear factors, nuclear factor kappa B 1 (NFκB1) and RelA, at the levels of RNA, protein and was confirmed by chromatin binding. Concordantly, we detected robust levels of NFκB1 and RelA proteins in the nucleus of somatic cells but not in the iPS cell derived from them. Overexpression of NFκB1 and RelA in undifferentiated pluripotent stem cells led to induction in expression of MHC-I, whereas silencing NFκB1 and RelA by small hairpin RNA decreased the expression of ß2M after IFNγ treatment. Our data point to the critical role of NFκB proteins in regulating the MHC-I expression in human pluripotent stem cells.


Asunto(s)
Reprogramación Celular/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/fisiología , FN-kappa B/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Regulación hacia Abajo , Fibroblastos/citología , Antígenos de Histocompatibilidad Clase I/biosíntesis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoquímica , Células Madre Pluripotentes Inducidas/citología , Interferón gamma/inmunología , Interferón gamma/farmacología , Análisis por Micromatrices , FN-kappa B/biosíntesis , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/antagonistas & inhibidores , Factor 3 de Transcripción de Unión a Octámeros/inmunología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción ReIA/biosíntesis , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Factor de Transcripción ReIA/metabolismo , Microglobulina beta-2/biosíntesis , Microglobulina beta-2/inmunología
3.
Stem Cell Reports ; 18(4): 817-828, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37001516

RESUMEN

Genomic imprinting underlies the mammalian requirement for sexual reproduction. Nonetheless, the relative contribution of the two parental genomes during human development is not fully understood. Specifically, a fascinating question is whether the formation of the gonad, which holds the ability to reproduce, depends on equal contribution from both parental genomes. Here, we differentiated androgenetic and parthenogenetic human pluripotent stem cells (hPSCs) into ovarian granulosa-like cells (GLCs). We show that in contrast to biparental and androgenetic cells, parthenogenetic hPSCs present a reduced capacity to differentiate into GLCs. We further identify the paternally expressed gene IGF2 as the most upregulated imprinted gene upon differentiation. Remarkably, while IGF2 knockout androgenetic cells fail to differentiate into GLCs, the differentiation of parthenogenetic cells supplemented with IGF2 is partly rescued. Thus, our findings unravel a surprising essentiality of genes that are only expressed from the paternal genome to the development of the female reproductive system.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Animales , Humanos , Femenino , Impresión Genómica , Diferenciación Celular/genética , Partenogénesis/genética , Células de la Granulosa , Mamíferos
4.
Stem Cell Reports ; 17(5): 1048-1058, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427485

RESUMEN

Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. The epigenetic factors responsible for FMR1 inactivation are largely unknown. Here, we initially demonstrated the feasibility of FMR1 reactivation by targeting a single epigenetic factor, DNMT1. Next, we established a model system for FMR1 silencing using a construct containing the FXS-related mutation upstream to a reporter gene. This construct was methylated in vitro and introduced into a genome-wide loss-of-function (LOF) library established in haploid human pluripotent stem cells (PSCs), allowing the identification of genes whose functional loss reversed the methylation-induced silencing of the FMR1 reporter. Selected candidate genes were further analyzed in haploid- and FXS-patient-derived PSCs, highlighting the epigenetic and metabolic pathways involved in FMR1 regulation. Our work sheds light on the mechanisms responsible for CGG-expansion-mediated FMR1 inactivation and offers novel targets for therapeutic FMR1 reactivation.


Asunto(s)
Síndrome del Cromosoma X Frágil , Metilación de ADN/genética , Epigénesis Genética , Epigenómica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Humanos
5.
J Cell Mol Med ; 15(6): 1393-401, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20561110

RESUMEN

Teratogens are substances that may cause defects in normal embryonic development while not necessarily being toxic in adults. Identification of possible teratogenic compounds has been historically beset by the species-specific nature of the teratogen response. To examine teratogenic effects on early human development we performed non-biased expression profiling of differentiating human embryonic and induced pluripotent stem cells treated with several drugs--ethanol, lithium, retinoic acid (RA), caffeine and thalidomide, which is known to be highly species specific. Our results point to the potency of specific teratogens and their affected tissues and pathways. Specifically, we could show that ethanol caused dramatic increase in endodermal differentiation, RA caused misregulation of neural development and thalidomide affected both these processes. We thus propose this method as a valuable addition to currently available animal screening approaches.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Cuerpos Embrioides/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Endodermo/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Teratógenos/farmacología , Línea Celular , Cuerpos Embrioides/patología , Células Madre Embrionarias/patología , Endodermo/patología , Etanol/efectos adversos , Perfilación de la Expresión Génica/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/patología , Neurogénesis/efectos de los fármacos , Talidomida/efectos adversos , Tretinoina/efectos adversos
6.
Stem Cells ; 28(9): 1530-40, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20641042

RESUMEN

Syndromes caused by chromosomal aneuploidies are widely recognized genetic disorders in humans and often lead to spontaneous miscarriage. Preimplantation genetic screening is used to detect chromosomal aneuploidies in early embryos. Our aim was to derive aneuploid human embryonic stem cell (hESC) lines that may serve as models for human syndromes caused by aneuploidies. We have established 25 hESC lines from blastocysts diagnosed as aneuploid on day 3 of their in vitro development. The hESC lines exhibited morphology and expressed markers typical of hESCs. They demonstrated long-term proliferation capacity and pluripotent differentiation. Karyotype analysis revealed that two-third of the cell lines carry a normal euploid karyotype, while one-third remained aneuploid throughout the derivation, resulting in eight hESC lines carrying either trisomy 13 (Patau syndrome), 16, 17, 21 (Down syndrome), X (Triple X syndrome), or monosomy X (Turner syndrome). On the basis of the level of single nucleotide polymorphism heterozygosity in the aneuploid chromosomes, we determined whether the aneuploidy originated from meiotic or mitotic chromosomal nondisjunction. Gene expression profiles of the trisomic cell lines suggested that all three chromosomes are actively transcribed. Our analysis allowed us to determine which tissues are most affected by the presence of a third copy of either chromosome 13, 16, 17 or 21 and highlighted the effects of trisomies on embryonic development. The results presented here suggest that aneuploid embryos can serve as an alternative source for either normal euploid or aneuploid hESC lines, which represent an invaluable tool to study developmental aspects of chromosomal abnormalities in humans.


Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Trastornos de los Cromosomas/genética , Cromosomas Humanos , Células Madre Embrionarias/patología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/patología , Diferenciación Celular/genética , Línea Celular , Proliferación Celular , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 13 , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 21 , Análisis por Conglomerados , Perfilación de la Expresión Génica , Pruebas Genéticas , Humanos , Cariotipificación , Diagnóstico Preimplantación/métodos , Síndrome
7.
Nat Commun ; 12(1): 6718, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795250

RESUMEN

In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Impresión Genómica , Haploidia , Células Madre Embrionarias Humanas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina/métodos , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Células Madre Embrionarias Humanas/citología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Partenogénesis/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Espermatogénesis/genética
8.
iScience ; 11: 398-408, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30660107

RESUMEN

Human pluripotent stem cells (hPSCs) acquire genetic changes during their propagation in culture that can affect their use in research and future therapies. To identify the key genes involved in selective advantage during culture adaptation and tumorigenicity of hPSCs, we generated a genome-wide screening system for genes and pathways that provide a growth advantage either in vitro or in vivo. We found that hyperactivation of the RAS pathway confers resistance to selection with the hPSC-specific drug PluriSIn-1. We also identified that inactivation of the RHO-ROCK pathway gives growth advantage during culture adaptation. Last, we demonstrated the importance of the PI3K-AKT and HIPPO pathways for the teratoma formation process. Our screen revealed key genes and pathways relevant to the tumorigenicity and survival of hPSCs and should thus assist in understanding and confronting their tumorigenic potential.

9.
Cell Stem Cell ; 25(3): 419-432.e9, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491396

RESUMEN

Genomic imprinting is an epigenetic mechanism that results in parent-of-origin monoallelic expression of specific genes, which precludes uniparental development and underlies various diseases. Here, we explored molecular and developmental aspects of imprinting in humans by generating exclusively paternal human androgenetic embryonic stem cells (aESCs) and comparing them with exclusively maternal parthenogenetic ESCs (pESCs) and bi-parental ESCs, establishing a pluripotent cell system of distinct parental backgrounds. Analyzing the transcriptomes and methylomes of human aESCs, pESCs, and bi-parental ESCs enabled the characterization of regulatory relations at known imprinted regions and uncovered imprinted gene candidates within and outside known imprinted regions. Investigating the consequences of uniparental differentiation, we showed the known paternal-genome preference for placental contribution, revealed a similar bias toward liver differentiation, and implicated the involvement of the imprinted gene IGF2 in this process. Our results demonstrate the utility of parent-specific human ESCs for dissecting the role of imprinting in human development and disease.


Asunto(s)
Células Madre Embrionarias/fisiología , Partenogénesis/fisiología , Células Madre Pluripotentes/fisiología , Caracteres Sexuales , Diferenciación Celular , Células Cultivadas , Metilación de ADN , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Padres , Transcriptoma
10.
Int J Dev Biol ; 61(3-4-5): 285-292, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28621425

RESUMEN

Fragile X syndrome is the most frequent cause of inherited intellectual disability. The primary molecular defect in this disease is the expansion of a CGG repeat in the 5' region of the fragile X mental retardation1 (FMR1) gene, leading to de novo methylation of the promoter and inactivation of this otherwise normal gene, but little is known about how these epigenetic changes occur during development. In order to gain insight into the nature of this process, we have used cell fusion technology to recapitulate the events that occur during early embryogenesis. These experiments suggest that the naturally occurring Fragile XFMR1 5' region undergoes inactivation post implantation in a Dicer/Ago-dependent targeted process which involves local SUV39H-mediated tri-methylation of histone H3K9. It thus appears that Fragile X syndrome may come about through inadvertent siRNA-mediated heterochromatinization.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica , Regiones no Traducidas 5' , Animales , Diferenciación Celular , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Heterocromatina/química , Histonas/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Regiones Promotoras Genéticas , ARN/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
11.
Stem Cell Reports ; 7(4): 777-786, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27618722

RESUMEN

Down syndrome (DS) is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize embryonic stem cell lines with DS (DS-ESCs), and focus on the neural aspects of the disease. Our results show that neural progenitor cells (NPCs) differentiated from five independent DS-ESC lines display increased apoptosis and downregulation of forehead developmental genes. Analysis of differentially expressed genes suggested RUNX1 as a key transcription regulator in DS-NPCs. Using genome editing we were able to disrupt all three copies of RUNX1 in DS-ESCs, leading to downregulation of several RUNX1 target developmental genes accompanied by reduced apoptosis and neuron migration. Our work sheds light on the role of RUNX1 and the importance of dosage balance in the development of neural phenotypes in DS.


Asunto(s)
Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Apoptosis/genética , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Dosificación de Gen , Edición Génica , Humanos , Cariotipo , Neurogénesis/genética , Fenotipo
12.
Cell Rep ; 13(2): 234-41, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26440889

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from a CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Here, we report a strategy for CGG repeat correction using CRISPR/Cas9 for targeted deletion in both embryonic stem cells and induced pluripotent stem cells derived from FXS patients. Following gene correction in FXS induced pluripotent stem cells, FMR1 expression was restored and sustained in neural precursor cells and mature neurons. Strikingly, after removal of the CGG repeats, the upstream CpG island of the FMR1 promoter showed extensive demethylation, an open chromatin state, and transcription initiation. These results suggest a silencing maintenance mechanism for the FMR1 promoter that is dependent on the existence of the CGG repeat expansion. Our strategy for deletion of trinucleotide repeats provides further insights into the molecular mechanisms of FXS and future therapies of trinucleotide repeat disorders.


Asunto(s)
Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Repeticiones de Trinucleótidos , Sistemas CRISPR-Cas , Células Cultivadas , Islas de CpG , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Regiones Promotoras Genéticas
13.
Nat Genet ; 46(6): 551-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24816254

RESUMEN

Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Proteínas de la Membrana/genética , Síndrome de Prader-Willi/genética , ARN no Traducido/genética , Adolescente , Encéfalo/metabolismo , Proteínas de Unión al Calcio , Cromatina/metabolismo , Aberraciones Cromosómicas , Metilación de ADN , Regulación hacia Abajo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Lactante , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transcripción Genética , Transcriptoma
14.
PLoS One ; 9(5): e96090, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24852222

RESUMEN

Both mouse and human embryonic stem cells can be differentiated in vitro to produce a variety of somatic cell types. Using a new developmental tracing approach, we show that these cells are subject to massive aberrant CpG island de novo methylation that is exacerbated by differentiation in vitro. Bioinformatics analysis indicates that there are two distinct forms of abnormal de novo methylation, global as opposed to targeted, and in each case the resulting pattern is determined by molecular rules correlated with local pre-existing histone modification profiles. Since much of the abnormal methylation generated in vitro appears to be stably maintained, this modification may inhibit normal differentiation and could predispose to cancer if cells are used for replacement therapy. Excess CpG island methylation is also observed in normal placenta, suggesting that this process may be governed by an inherent program.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Animales , Diferenciación Celular , Línea Celular , Islas de CpG , Células Madre Embrionarias/citología , Epigénesis Genética , Humanos , Ratones , Ratones Endogámicos C57BL
15.
Cell Rep ; 4(2): 262-70, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23871667

RESUMEN

Female human pluripotent stem cells show vast heterogeneity regarding the status of X chromosome inactivation. By comparing the gene expression profile of cells with two active X chromosomes (XaXa cells) to that of cells with only one active X chromosome (XaXi cells), a set of autosomal genes was shown to be overexpressed in the XaXa cells. Among these genes, we found significant enrichment for genes regulated by the X-linked transcription factor ELK-1. Comparison of the phenotype of XaXa and XaXi cells demonstrated differences in programmed cell death and differentiation, implying some growth disadvantage of the XaXa cells. Interestingly, ELK-1-overexpressing cells mimicked the phenotype of XaXa cells, whereas knockdown of ELK-1 with small hairpin RNA mimicked the phenotype of XaXi cells. When cultured at low oxygen levels, these cellular differences were considerably weakened. Our analysis implies a role of ELK-1 in the differences between pluripotent stem cells with distinct X chromosome inactivation statuses.


Asunto(s)
Células Madre Pluripotentes/fisiología , Inactivación del Cromosoma X/genética , Proteína Elk-1 con Dominio ets/genética , Animales , Apoptosis/genética , Diferenciación Celular , Regulación hacia Abajo , Femenino , Genómica , Humanos , Inmunohistoquímica , Ratones Endogámicos NOD , Ratones SCID , Análisis por Micromatrices , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Polimorfismo de Nucleótido Simple , Transcriptoma , Transfección , Proteína Elk-1 con Dominio ets/metabolismo
16.
Cell Stem Cell ; 12(2): 167-79, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23318055

RESUMEN

The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns), nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound, PluriSIn #1, induces ER stress, protein synthesis attenuation, and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in oleic acid biosynthesis, revealing a unique role for lipid metabolism in hPSCs. PluriSIn #1 was also cytotoxic to mouse blastocysts, indicating that the dependence on oleate is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ácido Oléico/síntesis química , Células Madre Pluripotentes/efectos de los fármacos , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Animales , Blastocisto/citología , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Células Cultivadas , Humanos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
17.
Nat Struct Mol Biol ; 18(6): 735-41, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21572443

RESUMEN

To study the role of parental imprinting in human embryogenesis, we generated parthenogenetic human induced pluripotent stem cells (iPSCs) with a homozygote diploid karyotype. Global gene expression and DNA methylation analyses of the parthenogenetic cells enabled the identification of the entire repertoire of paternally expressed genes. We thus demonstrated that the gene U5D, encoding a variant of the U5 small RNA component of the spliceosome, is an imprinted gene. Introduction of the U5D gene into parthenogenetic cells partially corrected their molecular phenotype. Our analysis also uncovered multiple miRNAs existing as imprinted clustered transcripts, whose putative targets we then studied further. Examination of the consequences of parthenogenesis on human development identified marked effects on the differentiation of extraembryonic trophectoderm and embryonic liver and muscle tissues. This analysis suggests that distinct regulatory imprinted small RNAs and their targets have substantial roles in human development.


Asunto(s)
Impresión Genómica , Células Madre Pluripotentes Inducidas/fisiología , Metilación de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Partenogénesis , ARN no Traducido/metabolismo
18.
Stem Cells ; 25(2): 465-72, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17038673

RESUMEN

Human ESCs (HESCs) are self-renewing pluripotent cell lines that are derived from the inner cell mass of blastocyst-stage embryos. These cells can produce terminally differentiated cells representing the three embryonic germ layers. We thus hypothesized that during the course of in vitro differentiation of HESCs, progenitor-like cells are transiently formed. We demonstrated that LEFTY proteins, which are known to play a major role during mouse gastrulation, are transiently expressed during HESC differentiation. Moreover, LEFTY proteins seemed to be exclusively expressed by a certain population of cells in the early human embryoid bodies that does not overlap with the population expressing the ESC marker OCT4. We also showed that LEFTY expression is regulated at the cellular transcription level by molecular labeling of LEFTY-positive cells. A DNA microarray analysis of LEFTY-overexpressing cells revealed a signature of cell surface markers such as CADHERIN 2 and 11. Expression of LEFTY controlled by NODAL appears to have a substantial role in mesodermal origin cell population establishment, since inhibition of NODAL activity downregulated expression not only of LEFTY A and LEFTY B but also of BRACHYURY, an early mesodermal marker. In addition, other mesodermal lineage-related genes were downregulated, and this was accompanied by an upregulation in ectoderm-related genes. We propose that during the initial step of HESC differentiation, mesoderm progenitor-like cells appear via activation of the NODAL pathway. Our analysis suggests that in vitro differentiation of HESCs can model early events in human development.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas/farmacología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Separación Celular , Células Cultivadas , Dioxoles/farmacología , Embrión de Mamíferos/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Proteínas Fetales/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Factores de Determinación Derecha-Izquierda , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Proteína Nodal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/genética , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
19.
Cell Stem Cell ; 1(5): 568-77, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18371394

RESUMEN

We report on the establishment of a human embryonic stem cell (HESC) line from a preimplantation fragile X-affected embryo and demonstrate its value as an appropriate model to study developmentally regulated events that are involved in the pathogenesis of this disorder. Fragile X syndrome results from FMR1 gene inactivation due to a CGG expansion at the 5'UTR region of the gene. Early events in FMR1 silencing have not been fully characterized due to the lack of appropriate animal or cellular models. Here we show that, despite the presence of a full mutation, affected undifferentiated HESCs express FMR1 and are DNA unmethylated. However, epigenetic silencing by DNA methylation and histone modification occurs upon differentiation. Our unique cell system allows the dissection of the sequence by which these epigenetic changes are acquired and illustrates the importance of HESCs in unraveling developmentally regulated mechanisms associated with human genetic disorders.


Asunto(s)
Blastocisto/patología , Diferenciación Celular/genética , Células Madre Embrionarias/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Mutación , Diagnóstico Preimplantación , Animales , Blastocisto/metabolismo , Línea Celular , Metilación de ADN , Células Madre Embrionarias/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Silenciador del Gen , Histonas/metabolismo , Humanos , Ratones , Ratones SCID , Teratoma/genética , Teratoma/patología , Células Tumorales Cultivadas
20.
Stem Cells ; 24(8): 1923-30, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16675598

RESUMEN

Human embryonic stem cells (HESCs) are pluripotent cells that may serve as a source of cells for transplantation medicine and as a tool to study human embryogenesis. Using genetic manipulation methodologies, we have investigated the potential of HESCs to differentiate into the various pancreatic cell types. We initially created various HESCs carrying the enhanced green fluorescent protein (eGFP) reporter gene under the control of either the insulin promoter or the pancreatic and duodenal homeobox factor-1 (Pdx1) promoter. Our analysis revealed that during the differentiation of HESCs into embryoid bodies (EBs), we could detect green fluorescent cells when eGFP is regulated by Pdx1 promoter but not by insulin promoter. To examine whether we can induce differentiation into pancreatic cells, we have established human embryonic stem cell lines that constitutively express either Pdx1 or the endodermal transcription factor Foxa2. Following differentiation into EBs, the constitutive expression of Pdx1 enhanced the differentiation of HESCs toward pancreatic endocrine and exocrine cell types. Thus, we have demonstrated expression of several transcription factors that are downstream of Pdx1 and various molecular markers for the different pancreatic cell types. However, the expression of the insulin gene could be demonstrated only when the cells differentiated in vivo into teratomas. We conclude that although overexpression of Pdx1 enhanced expression of pancreatic enriched genes, induction of insulin expression may require additional signals that are only present in vivo.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Proteínas de Homeodominio/genética , Páncreas/citología , Páncreas/metabolismo , Transactivadores/genética , Animales , Diferenciación Celular , Línea Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 3-beta del Hepatocito/biosíntesis , Proteínas de Homeodominio/biosíntesis , Humanos , Insulina/genética , Ratones , Ratones SCID , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Teratoma , Transactivadores/biosíntesis , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA