Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 149: 107499, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815476

RESUMEN

Janus Kinase 3 (JAK3) is important for the signaling transduction of cytokines in immune cells and is identified as potential target for treatment of rheumatoid arthritis (RA). Recently, we designed and synthesized two JAK3 inhibitors J1b and J1f, which featured with high selectivity but mild bioactivity. Therefore, in present study the structure was optimized to increase the potency. As shown in the results, most of the compounds synthesized showed stronger inhibitory activities against JAK3 in contrast to the lead compounds, among which 9a was the most promising candidate because it had the most potent effect in ameliorating carrageenan-induced inflammation of mice and exhibited low acute in vivo toxicity (MTD > 2 g/kg). Further analysis revealed that 9a was highly selective to JAK3 (IC50 = 0.29 nM) with only minimal effect on other JAK members (>3300-fold) and those kinases bearing a thiol in a position analogous to that of Cys909 in JAK3 (>150-fold). Meanwhile, the selectivity of JAK3 was also confirmed by PBMC stimulation assay, in which 9a irreversibly bound to JAK3 and robustly inhibited the signaling transduction with mild suppression on other JAKs. Moreover, it was showed that 9a could remarkably inhibited the proliferation of lymphocytes in response to concanavalin A and significantly mitigate disease severity in collagen induced arthritis. Therefore, present data indicate that compound 9a is a selective JAK3 inhibitor and could be a promising candidate for clinical treatment of RA.


Asunto(s)
Artritis Reumatoide , Janus Quinasa 3 , Inhibidores de Proteínas Quinasas , Pirimidinas , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Animales , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Humanos , Relación Estructura-Actividad , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Carragenina , Masculino , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inducido químicamente , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/síntesis química , Simulación del Acoplamiento Molecular
2.
Mol Divers ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709458

RESUMEN

Nitric oxide (NO), the smallest signaling molecule known, can be excessively produced by overexpressed inducible nitric oxide synthase (iNOS), and eventually leads to multiple inflammatory related diseases. Thus, reducing the overexpression of NO represents as very potential anti-inflammatory strategy. In current study, a series of compounds were designed and synthesized based on the hybridization of 7H-pyrrolo[2,3-d]pyrimidine and cinnamamide fragments in order to develop novel NO production inhibitors. Among them, compound S2h displayed a vigorous inhibitory activity on NO production with an IC50 value of 3.21 ± 0.67 µM, which was much lower than that of the positive control Nω-nitro-L-arginine (L-NNA, IC50 = 28.36 ± 3.13 µM). Due to its obeying Lipinski's and Veber's rules that guarantee compounds with good oral bioavailability, S2h effectively suppressed the paw swelling in carrageenan-induced mice. Additionally, compound S2h formed clear interactions with iNOS protein according to the docking analysis. Therefore, compounds S2h is a promising lead compound for further development of potent iNOS inhibitors or anti-inflammatory agents.

3.
Arch Pharm (Weinheim) ; 357(6): e2300753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442328

RESUMEN

Selective inhibition of Janus kinase 3 (JAK3) is a promising strategy for the treatment of autoimmune diseases. Based on the discovery of a hydrophobic pocket unutilized between the lead compound RB1 and the JAK3 protein, a series of covalent JAK3 inhibitors were prepared by introducing various aromatic fragments to RB1. Among them, J1b (JAK3 IC50 = 7.2 nM, other JAKs IC50 > 1000 nM) stood out because of its low toxicity (MTD > 2 g/kg) and superior anti-inflammatory activity in Institute of Cancer Research mice. Moreover, the acceptable bioavailability (F% = 31.69%) ensured that J1b displayed excellent immune regulation in collagen-induced arthritis mice, whose joints in the high-dose group were almost recovered to a normal state. Given its clear kinase selectivity (Bmx IC50 = 539.9 nM, other Cys909 kinases IC50 > 1000 nM), J1b was nominated as a highly selective JAK3 covalent inhibitor, which could be used to safely treat arthritis and other autoimmune diseases.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Diseño de Fármacos , Janus Quinasa 3 , Inhibidores de Proteínas Quinasas , Animales , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/metabolismo , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inducido químicamente , Artritis Experimental/enzimología , Artritis Reumatoide/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Ratones Endogámicos DBA , Humanos , Relación Dosis-Respuesta a Droga , Estructura Molecular , Masculino , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA