Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biomacromolecules ; 19(4): 1130-1141, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29514006

RESUMEN

Multidrug resistance (MDR) is the major cause for chemotherapy failure, which constitutes a formidable challenge in the field of cancer therapy. The synergistic chemo-photothermal treatment has been reported to be a potential strategy to overcome MDR. In this work, rationally designed enzyme-degradable, hyperbranched polyphosphoester nanomedicines were developed for reversing MDR via the codelivery of doxorubicin and IR-780 (hPPEDOX&IR) as combined chemo-photothermal therapy. The amphiphilic hyperbranched polyphosphoesters with phosphate bond as the branching point were synthesized via a simple but robust one-step polycondensation reaction. The self-assembled hPPEDOX&IR exhibited good serum stability, sustained release, preferable tumor accumulation, and enhanced drug influx of doxorubicin in resistant MCF-7/ADR cells. Moreover, the degradation of hPPEDOX&IR was accelerated in the presence of alkaline phosphatase, which was overexpressed in various cancers, resulting in the fast release of encapsulated doxorubicin. The enzyme-degradable polymer generated synergistic chemo-photothermal cytotoxicity against MCF-7/ADR cells and, thus, the efficient ablation of DOX-resistant tumor without regrowth. This delivery system may open a new avenue for codelivery of chemo- and photothermal therapeutics for MDR tumor therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Nanomedicina , Neoplasias/tratamiento farmacológico , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Quimioterapia/métodos , Humanos , Indoles/química , Indoles/farmacología , Células MCF-7 , Fototerapia
2.
Am J Cancer Res ; 6(2): 226-37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27186398

RESUMEN

Cholangiocarcinoma (CCA), the most common biliary tract malignancy, is arising from the bile duct epithelium with the global significantly increased morbidity and mortality. Here, we showed the effect of guggulsterone, a steroid found in the resin of the guggul plant, on human HuCC-T1 and RBE CCA cells. Exposure to various concentrations of guggulsterone for multiple action time resulted in significant apoptosis in the CCA cells via activating both extrinsic and intrinsic pathways. Furthermore, we demonstrated that the apoptosis of CCA cells was induced by Reactive oxygen species (ROS) mediated JNK signaling pathway. Consistently, inhibition of JNK activity, overexpression of JBD, its binding protein or reduction of ROS by overexpression of catalase, all decreased apoptotic cells. Our results also revealed that guggulsterone-induced apoptosis was coupled with endoplasmic reticulum stress (ERS) in CHOP-dependent pathway. Downregulation of CHOP instead of other ERS markers could inhibit CCA cell apoptosis. Taken together, our results showed that guggulsterone could induce apoptosis of human CCA cells through ROS/JNK signaling pathway, indicating that guggulsterone could be important for the clinical therapy of CCA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA