Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 193: 106803, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230158

RESUMEN

Although strides have been made, the challenge of preventing and treating ischemic stroke continues to persist globally. For thousands of years, the natural substances Frankincense and Myrrh have been employed in Chinese and Indian medicine to address cerebrovascular diseases, with the key components of 11-keto-ß-boswellic acid (KBA) and Z-Guggulsterone (Z-GS) being the active agents. In this study, the synergistic effect and underlying mechanism of KBA and Z-GS on ischemic stroke were examined using single-cell transcriptomics. Fourteen cell types were identified in KBA-Z-GS-treated ischemic penumbra, and microglia and astrocytes account for the largest proportion. They were further re-clustered into six and seven subtypes, respectively. GSVA analysis reflected the distinct roles of each subtype. Pseudo-time trajectory indicated that Slc1a2 and Timp1 were core fate transition genes regulated by KBA-Z-GS. In addition, KBA-Z-GS synergistically regulated inflammatory reactions in microglia and cellular metabolism and ferroptosis in astrocytes. Most notably, we established an innovative drug-gene synergistic regulation pattern, and genes regulated by KBA-Z-GS were divided into four categories based on this pattern. Finally, Spp1 was demonstrated as the hub target of KBA-Z-GS. Taken together, this study reveals the synergistic mechanism of KBA and Z-GS on cerebral ischemia, and Spp1 may be the synergistic target for that. Precise drug development targeting Spp1 may offer a potential therapeutic approach for treating ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Triterpenos , Humanos , Transcriptoma , Triterpenos/farmacología , Triterpenos/uso terapéutico
2.
Pharm Biol ; 60(1): 119-130, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34985385

RESUMEN

CONTEXT: Stroke is an illness with high morbidity, disability and mortality that presents a major clinical challenge. Sanhua decoction (SHD) has been widely used to treat ischaemic stroke in the clinic. However, the potential mechanism of SHD remains unknown. OBJECTIVE: To elucidate the multitarget mechanism of SHD in ischaemic stroke through network pharmacology and bioinformatics analyses. MATERIALS AND METHODS: Network pharmacology and experimental validation approach was used to investigate the bioactive ingredients, critical targets and potential mechanisms of SHD against ischaemic stroke. Four herbal names of SHD, 'ischemic stroke' or 'stroke' was used as a keyword to search the relevant databases. SH-SY5Y cells were treated with various concentrations of SHD (12.5, 25, 50 or 100 µg/mL) for 4 h, exposed to oxygen and glucose deprivation (OGD) for 1 h, then reoxygenation for 24 h. The cell viability was detected by MTT, the lactate dehydrogenase (LDH) was evaluated by ELISA, and protein expression was detected by western blots. RESULTS: SHD treatment increased the survival rate from 65.9 ± 4.3 to 85.56 ± 5.7%. The median effective dose (ED50) was 47.1 µg/mL, the LDH decreased from 288.0 ± 12.0 to 122.8 ± 9.1 U/L and the cell apoptosis rate decreased from 33.6 ± 1.8 to 16.3 ± 1.2%. Western blot analysis revealed that SHD increased the levels of p-PI3k, p-Akt and p-CREB1, and decreased the expression of TNF-α and IL-6. DISCUSSION AND CONCLUSIONS: This study suggests that SHD protects against cerebral ischaemic injury via regulation of the PI3K/Akt/CREB1 and TNF pathways.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Farmacología en Red , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Bioorg Med Chem Lett ; 29(14): 1831-1835, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31097376

RESUMEN

In this investigation, a series of 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea receptor tyrosine kinase inhibitors were synthesized by a simple and efficient structure-based design. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against human chronic myeloid leukemia (CML) cell line K562, but very weak or no cellular toxicity through monitoring the growth kinetics of K562 cell during a period of 72 h using the real-time live-cell imaging. Among these compounds, 1-(5-((6-((3-morpholinopropyl) amino)pyrimidin-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-(4-(trifluoromethyl)phenyl)urea (7) exhibited the least cellular toxicity and better biological activity in cellular assays (K562, IC50: 0.038 µM). Compound 7 also displayed very good induced-apoptosis effect for human CML cell line K562 and exerted its effect via a significantly reduced protein phosphorylation of PI3K/Akt signal pathway by Human phospho-kinase array analysis. In vitro results indicate that 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea derivatives are lead molecules for further development as treatment of chronic myeloid leukemia and cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Diseño de Fármacos , Humanos , Transducción de Señal , Relación Estructura-Actividad
4.
Am J Physiol Renal Physiol ; 315(2): F254-F262, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384417

RESUMEN

Salvianolic acid A (Sal A) has been shown to prevent and treat ischemic cardiovascular, as well as cerebral vascular diseases. However, little is known about Sal A in renal ischemia/reperfusion (I/R) injury. In this study, a renal I/R injury model in rats and a hypoxia/reoxygenation (H/R) model to damage proximal renal tubular cells (HK-2) were used to assess whether Sal A halts the development and progression of renal I/R injury. As compared with vehicle treatment, Sal A significantly attenuated kidney injury after renal I/R injury, accompanied by decreases in plasma creatinine, blood urea nitrogen levels, the number of apoptosis-positive tubular cells, and kidney oxidative stress. Sal A also activated phosphorylated protein kinase B (p-Akt) and phosphorylated-mammalian target of rapamycin (p-mTOR) compared with vehicle-treated I/R injury rats. In H/R-injured HK-2 cells, Sal A can reduce the levels of reactive oxygen species in a dose-related manner. Similar to the results from in vivo experiments, in vitro Sal A also increased the protein expression of phosphorylated-eukaryotic initiation factor 4E binding protein 1 (p-4EBP1) compared with vehicle. Furthermore, the cytoprotective activity of Sal A was inhibited by LY294002 and rapamycin. These findings indicate that Sal A can ameliorate renal I/R injury and promote tubular cell survival partly via the Akt/mTOR/4EBP1pathway. Sal A could be a candidate compound to prevent ischemic tissue damage.


Asunto(s)
Lesión Renal Aguda/prevención & control , Alquenos/farmacología , Proteínas Portadoras/metabolismo , Riñón/efectos de los fármacos , Fosfoproteínas/metabolismo , Polifenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fármacos Renales/farmacología , Daño por Reperfusión/prevención & control , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/sangre , Nitrógeno de la Urea Sanguínea , Línea Celular , Creatinina/sangre , Citoprotección , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular , Riñón/enzimología , Riñón/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas Sprague-Dawley , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología
5.
J Sep Sci ; 38(10): 1784-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25781863

RESUMEN

An ultra high performance liquid chromatography with tandem mass spectrometry method was established for the rapid and simultaneous analysis of seven antiviral drugs, amantadine, rimantadine, memantine, moroxydine, imiquimod, oseltamivir, and acyclovir, in chicken liver, muscle, and egg. Homogenized samples were extracted with trichloroacetic acid and acetonitrile solutions and then purified by cation-exchange solid-phase extraction. The target drugs were analyzed by liquid chromatography with a UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 µm) coupled with a tandem mass spectrometer operating in the positive multiple-reaction mode. A perfectly linear relationship was obtained within the concentration ranges of 0.5-20 µg/L for acyclovir and 0.1-10 µg/L for the other six antiviral drugs. The average recoveries of the seven antiviral drugs using four addition levels in chicken liver, muscle, and eggs were 82.67-90.10, 82.30-92.27, and 81.98-93.77%, respectively, and the acceptable coefficients of variation were 5.18-9.88, 4.84-11.2, and 42.8-9.95%, respectively. The detection limits and detection capabilities of the analysis method for the seven antiviral drugs were in the ranges of 0.04-0.64 and 0.11-0.78 µg/kg, respectively. Additionally, an inter-laboratory study among five laboratories further validated the method.


Asunto(s)
Antivirales/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Pollos , Reproducibilidad de los Resultados
6.
Molecules ; 20(1): 293-308, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25547727

RESUMEN

Oxidative stress plays an important role in Parkinson's disease and other neurodegenerative disorders. Lycium barbarum polysaccharides (LBP), the main active ingredients extracted from the fruits of Lycium barbarum L., have been shown to be a potent antioxidant. In the present study, we investigated the protective effects, and the possible mechanism of action of LBP against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Our data demonstrated that LBP significantly reversed the 6-OHDA-induced decrease in cell viability, prevented 6-OHDA-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. Furthermore, LBP also slowed the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), decreased the level of protein-bound 3-nitrotyrosine (3-NT) and intracellular free Ca2+, and inhibiting the overexpression of nuclear factor κB (NF-κB), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS). These results demonstrate that LBP prevents 6-OHDA-induced apoptosis in PC12 cells, at least in part through the ROS-NO pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Óxido Nítrico/metabolismo , Oxidopamina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células PC12 , Ratas
7.
Phytomedicine ; 123: 155237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056148

RESUMEN

BACKGROUND: The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE: To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS: The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS: The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION: This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.


Asunto(s)
Isquemia Encefálica , Glucósidos , Glicósidos Iridoides , Accidente Cerebrovascular Isquémico , Polifenoles , Daño por Reperfusión , Accidente Cerebrovascular , Verbena , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Enfermedades Neuroinflamatorias , Apigenina , Luteolina/uso terapéutico , Simulación del Acoplamiento Molecular , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Interleucina-17
8.
Planta Med ; 79(8): 673-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23670628

RESUMEN

Four new triterpenoid saponins named clematangosides A-D (1-4) along with six known saponins (5-10) were isolated from the whole plants of Clematis tangutica. Their structures were determined by extensive spectral analysis and chemical evidences. All saponins were evaluated for their protective effects in hypoxia-induced myocardial injury model. Compounds 2-4, 6, and 10 exhibited anti-myocardial ischemia activities with ED50 values in the range of 75.77-127.22 µM.


Asunto(s)
Clematis/química , Isquemia Miocárdica/tratamiento farmacológico , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Conformación de Carbohidratos , Espectroscopía de Resonancia Magnética , Saponinas/química , Saponinas/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Triterpenos/química , Triterpenos/aislamiento & purificación
9.
Acta Pharm ; 73(3): 489-502, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37708962

RESUMEN

Colorectal cancer (CRC) is one of the most common types of malignant cancers worldwide. Although molecularly targeted therapies have significantly improved treatment outcomes, most of these target inhibitors are resistant. Novel inhibitors as potential anticancer drug candidates are still needed to be discovered. Therefore, in the present study, we synthesized a novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative (compound 4) using fragment- and structure-based techniques and then investigated the anticancer effect and underlying mechanism of anti-CRC. The results revealed that compound 4 significantly inhibited HCT116 cell proliferation with IC 50 values of 8.04 ± 0.94 µmol L-1 after 48 h and 5.52 ± 0.42 µmol L-1 after 72 h, respectively. Compound 4 also inhibited colony formation, migration, and invasion of HCT116 cells in a dose-dependent manner, as well as inducing cell apoptosis and arresting the cell cycle in the G2/M phase. In addition, compound 4 was able to inhibit the activation of the MEK/ERK signaling in HCT116 cells. And compound 4 yielded the same effects as the MEK inhibitor U0126 on cell apoptosis and MEK/ERK-related proteins. These findings suggested that compound 4 inhi bited cell proliferation and growth, and induced cell apoptosis, indicating its use as a novel and potent anticancer agent against CRC via the MEK/ERK signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Proliferación Celular , Pirimidinas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos
10.
Front Physiol ; 13: 813626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197864

RESUMEN

Accumulating evidence suggests that neuropathic pain (NP) is closely connected to the metabolic disorder of gut microbiota, and natural products could relieve NP by regulating gut microbiota. The purpose of this study is to investigate the important regulatory effects of osthole on gut microbiota and serum metabolites in mice with chronic constriction injury (CCI). Mice's intestinal contents and serum metabolites were collected from the sham group, CCI group, and osthole treatment CCI group. The 16S rRNA gene sequencing was analyzed, based on Illumina NovaSeq platform, and ANOVA analysis were used to analyze the composition variety and screen differential expression of intestinal bacteria in the three groups. Ultra-high-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry (UHPLC-Q-TOF-MS) was used for analyzing the data obtained from serum specimens, and KEGG enrichment analysis was used to identify pathways of differential metabolites in the treatment of neuralgia mice. Furthermore, the Pearson method and Cytoscape soft were used to analyze the correlation network of differential metabolites, gut microbiota, and disease genes. The analysis results of 16S rRNA gene sequencing displayed that Bacteroidetes, Firmicutes, and Verrucomicrobia were highly correlated with NP after osthole treatment at the phylum level. Akkermansia, Lachnospiraceae_unclassified, Lachnospiraceae_NK4A136_group, Bacteroides, Lactobacillus, and Clostridiales_unclassified exhibited higher relative abundance and were considered important microbial members at genus level in neuralgia mice. Serum metabolomics results showed that 131 metabolites were considered to be significantly different in the CCI group compared to the sham group, and 44 metabolites were significantly expressed between the osthole treatment group and the CCI group. At the same time, we found that 29 differential metabolites in the two comparison groups were overlapping. Integrated analysis results showed that many intestinal microorganisms and metabolites have a strong positive correlation. The correlation network diagram displays that 10 genes were involved in the process of osthole alleviating NP through a metabolic pathway and gut microbiota, including IGF2, GDAP1, MYLK, IL18, CD55, MIR331, FHIT, F3, ERBB4, and ITGB3. Our findings have preliminarily confirmed that NP is closely related to metabolism and intestinal microbial imbalance, and osthole can improve the metabolic disorder of NP by acting on gut microbiota.

11.
Arch Osteoporos ; 17(1): 84, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715524

RESUMEN

Denosumab is a newly approved treatment for osteoporosis in China. However, the clinical safety and advantages of denosumab have not been much established. The current study evaluates the real-world safety of denosumab versus zoledronic acid in treating cancer-free adults aged 50 years or older with osteoporosis to provide clinical settings guidelines. PURPOSE: A head-to-head comparison of the safety profiles between denosumab (60 mg subcutaneously every 6 months) and zoledronic acid (5 mg, intravenously yearly) was performed in cancer-free adults aged 50 years or older with osteoporosis. METHODS: MEDLINE, EMBASE, and Cochrane Library databases were searched for cohort studies comparing the safety of denosumab and zoledronic acid in cancer-free adults aged 50 years or older with osteoporosis till December 2021. The outcomes included the risk of fracture and other severe adverse events. Based on the Cochrane Handbook for Systematic Reviews of Interventions 5.0.2, we identified the eligible studies. RESULTS: Three cohort studies having 38,845 cancer-free adults aged 50 years or older were included in the study. The results showed that denosumab was not superior to zoledronic acid in reducing fracture risk [RR (95% CI): 1.05 (0.90, 1.23), P = 0.52]. However, denosumab had a low risk of composite cardiovascular disease [RR (95% CI): 0.82 (0.70, 0.96), P = 0.01]. There were no significant differences between the hazards of serious infection, and total adverse events (P > 0.05). CONCLUSION: The present meta-analysis demonstrated that for cancer-free adults aged 50 years or older with osteoporosis, denosumab was as safe as zoledronic acid for the risk of drug-induced fractures. However, denosumab had a lower incidence of composite cardiovascular disease, and may be a better option for the population with cardiovascular disease. Nonetheless, due to limitations like a short-term follow-up, gender, and incomplete types of adverse effects, more randomized controlled trials (RCTs) are required to further verify this conclusion.


Asunto(s)
Conservadores de la Densidad Ósea , Enfermedades Cardiovasculares , Fracturas Óseas , Osteoporosis , Anciano , Conservadores de la Densidad Ósea/efectos adversos , Estudios de Cohortes , Denosumab/efectos adversos , Difosfonatos/efectos adversos , Fracturas Óseas/tratamiento farmacológico , Humanos , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Revisiones Sistemáticas como Asunto , Ácido Zoledrónico/efectos adversos
12.
Oxid Med Cell Longev ; 2022: 9749461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251482

RESUMEN

Quercetin, a naturally occurring flavonoid, is mainly extracted from tea, onions, and apples. It has the underlying neuroprotective effect on experimental ischemic stroke. A systematic review and meta-analysis were used to assess quercetin's efficacy and possible mechanisms in treating focal cerebral ischemia. Compared with the control group, twelve studies reported a remarkable function of quercetin in improving the neurological function score (NFS) (P < 0.05), and twelve studies reported a significant effect on reducing infarct volume (P < 0.05). Moreover, two and three studies showed that quercetin could alleviate blood-brain barrier (BBB) permeability and brain water content, respectively. The mechanisms of quercetin against focal cerebral ischemia are diverse, involving antioxidation, antiapoptotic, anti-inflammation, and calcium overload reduction. On the whole, the present study suggested that quercetin can exert a protective effect on experimental ischemic stroke. Although the effect size may be overestimated because of the quality of studies and possible publication bias, these results indicated that quercetin might be a promising neuroprotective agent for human ischemic stroke. This study is registered with PROSPERO, number CRD 42021275656.


Asunto(s)
Infarto Cerebral/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/uso terapéutico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Quercetina/uso terapéutico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Permeabilidad/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Resultado del Tratamiento
13.
Mar Drugs ; 9(2): 162-183, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21566793

RESUMEN

Six new sterols (1-6), together with seven known sterols (7-13), were isolated from the CCl(4) extract of the marine bryozoan Cryptosula pallasiana, four (3-6) of which have already been reported as synthetic sterols. This is the first time that these compounds (3-6) are reported as natural sterols. The structures of the new compounds were determined on the basis of the extensive spectroscopic analysis, including two-dimensional (2D) NMR and HR-ESI-MS data. Compounds 1-4, 7 and 10-13 were evaluated for their cytotoxicity against HL-60 human myeloid leukemia cell line, and all of the evaluated compounds exhibited moderate cytotoxicity to HL-60 cells with a range of IC(50) values from 14.73 to 22.11 µg/mL except for compounds 12 and 13.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Briozoos/química , Esteroles/química , Esteroles/farmacología , Animales , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Leucemia Mieloide/tratamiento farmacológico , Espectroscopía de Resonancia Magnética/métodos , Esteroles/aislamiento & purificación , Células U937
14.
J Nat Prod ; 73(4): 590-7, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20184290

RESUMEN

Ten new polyhydroxysteroidal glycosides, anthenosides B-K (2-11), were isolated from the ethanol extract of the starfish Anthenea chinensis. Their structures were elucidated by extensive spectroscopic studies and chemical evidence. The unprecedented carbohydrate chain 6-O-methyl-beta-d-galactofuranosyl-(1-->3)-(6-O-methyl-beta-d-galactofuranose) was present in all the compounds except compounds 10 and 11. Compounds 5, 7, a mixture of 8 and 9, and a mixture of 10 and 11 showed inhibitory activity against human tumor K-562 and BEL-7402 cells. Furthermore, the mixture of 10 and 11 also exhibited cytotoxicity against human tumor U87MG cells and promoted tubulin polymerization.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Glicósidos/aislamiento & purificación , Estrellas de Mar/química , Esteroides/aislamiento & purificación , Moduladores de Tubulina/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glicósidos/química , Glicósidos/farmacología , Humanos , Células K562 , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Esteroides/química , Esteroides/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
15.
Se Pu ; 38(2): 212-217, 2020 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-34213170

RESUMEN

A method was developed for the determination of four protease inhibitors (saquinavir, ritonavir, nelfinavir and indinavir) in chicken using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were extracted by shaking with 30% (v/v) acetonitrile aqueous solution (containing 1% (v/v) trichloroacetic acid), and purified by using mixed-mode cationic-exchanger (MCX) cartridges. The samples were separated on a Luna® C8 column (150 mm×2 mm, 3 µm) using 0.2% (v/v) formic acid aqueous solution (containing 5 mmol/L ammonium acetate) and acetonitrile as the mobile phases with gradient elution. The determination was carried out by using an electrospray ion source in the positive and multiple-reaction monitoring (MRM) modes. The calibration curves showed good linearities in the range of 0.1-20.0 µg/L, and the correlation coefficients (r2) were greater than 0.99. The limits of quantification (LOQs, S/N=10) of the four protease inhibitors varied from 0.20 µg/kg to 0.90 µg/kg. At the spiked levels of 1.0, 2.0, and 10.0 µg/kg, the average recoveries of the four protease inhibitors were ranging from 69.0% to 106.0%. The intra-day and inter-day relative standard deviations (RSDs) were 2.2%-13.8% (n=6) and 3.6%-14.6% (n=3), respectively. The method is simple, efficient, sensitive and accurate, and it can be used to detect residues of saquinavir, ritonavir, nelfinavir and indinavir in chicken.


Asunto(s)
Análisis de los Alimentos , Contaminación de Alimentos/análisis , Productos Avícolas/análisis , Inhibidores de Proteasas/análisis , Animales , Pollos , Cromatografía Líquida de Alta Presión , Indinavir , Nelfinavir , Ritonavir , Saquinavir , Espectrometría de Masas en Tándem
16.
Aging (Albany NY) ; 12(9): 7945-7962, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32365053

RESUMEN

There are many reports about natural products relieving neuralgia. Osthole is the main component of Angelica biserrata Yuan et Shan, a natural product that treats rheumatism through the elimination of inflammation and the alleviation of pain that has a long history in the clinic. The analgesic mechanism of osthole is complicated and confusing. Astrocytes have attracted increasing attention from pain researchers. Inhibitors targeting astrocytes are thought to be promising treatments for neuropathic pain. Whether osthole can alleviate neuropathic pain through astrocytes has not been elucidated in detail. In this study, CCI surgery was used to establish the neuropathic pain model in mice. The CCI mice were treated with osthole (5, 10, or 20 mg/kg/day) for 14 days in vivo. Mechanical allodynia and heat hyperalgesia were measured to evaluate the therapeutic effect of osthole. In mechanism research, the activation of astrocytes; the protein expression of P2Y1R and p-JNK in astrocytes; the release of inflammatory factors; the variations in mEPSPs and eEPSPs; and the levels of GluA1, GluN2B, p-ERK, p-CREB and c-Fos in neurons were observed. The P2Y1R inhibitor MRS2179 and the p-JNK inhibitor SP600125 were used to demonstrate how osthole works in neuropathic pain. In addition, astrocytes and neurons were used to estimate the direct effect of osthole on astrocyte-neuron interactions and signal transmission in vitro. Our findings suggest that osthole treatment obviously relieved mechanical allodynia and heat hyperalgesia in CCI mice. P2Y1R is involved in CCI-induced pain hypersensitivity, and P2Y1R is required for osthole-induced p-JNK downregulation in the spinal cord. Osthole inhibited astrocyte activation and reduced inflammatory factor expression. After osthole treatment, mEPSP frequency and eEPSP amplitude were decreased in spinal lamina I-II neurons. Downstream signaling molecules such as pGluA1, pGluN2B, p-ERK, p-CREB and c-Fos were also reduced very quickly in osthole-treated neuralgic mice. Our conclusion is that osthole alleviates neuropathic pain in mice via the P2Y1-receptor-dependent JNK signaling pathway in spinal astrocytes, and osthole could be considered a potential pharmacotherapy to alleviate neuropathic pain.


Asunto(s)
Cumarinas/farmacología , Sistema de Señalización de MAP Quinasas/genética , Neuralgia/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2Y/farmacología , Médula Espinal/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones , Neuralgia/metabolismo , Transducción de Señal
17.
Chem Biol Interact ; 331: 109246, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877639

RESUMEN

Colorectal cancer (CRC) represents one of the commonest malignancies around the world. PP9, a natural steroidal saponin, was firstly isolated from the rhizomes of Paris polyphylla var. latifolia. However, the therapeutic effects of PP9 on CRC and the underlying molecular mechanism remain undefined. Here, we demonstrated that treatment with PP9 time- and dose-dependently inhibited HT-29 and HCT116 cells without significantly inhibiting normal NCM460 cells. Furthermore, our results indicated that PP9 effectively induced G2/M phase arrest by upregulating p21 and suppressing cdc25C, Cyclin B1 and cdc2. Meanwhile, PP9 upregulated cleaved Caspase 3, cleaved Caspase 9 and cleaved PARP and Bax, while downregulating Bcl-2 to stimulate cell apoptosis. Mechanistically, PP9-suppressed PI3K/Akt/GSK3ß signaling, while the PI3K inhibitor LY294002 augmented PP9-mediated apoptosis, G2/M arrest and effects on PI3K/Akt/GSK3ß related proteins. Finally, we showed that PP9 (10 mg/kg) significantly reduced tumor growth in nude mouse CRC xenografts, more potently than 5-Fu (20 mg/kg). Jointly, these data firstly demonstrated that PP9 promotes G2/M arrest and apoptotic death in CRC cells through PI3K/Akt/GSK3ß signaling suppression, suggesting that PP9 could be considered a new and promising candidate for CRC therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Línea Celular Tumoral , Cromonas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Liliales/química , Liliales/metabolismo , Masculino , Ratones , Ratones Desnudos , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Saponinas/uso terapéutico , Trasplante Heterólogo
18.
J Asian Nat Prod Res ; 11(12): 1005-12, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20183269

RESUMEN

From the marine bryozoan Bugula neritina inhabiting South China Sea, a new ceramide named (2S,3R,4E)-2-(14'-methyl-pentadecanoylamino)-4-octadecene-l,3-diol (1) and a new cerebroside named 1-O-(beta-D-glucopyranosyl)-(2S,3R,4E)-2-(heptadecanoylamino)-4-octadecene-l,3-diol (6), together with one known ceramide (2) and three known cerebrosides (3, 4, and 5), were isolated. Their structures were deduced by extensive spectral analysis and chemical evidences. Compound 1 is branched with a methyl [-CH(CH(3))(2)] in the fatty acid moiety, which is a rare structural feature among ceramides. Compound 6 is a new cerebroside with 17 carbons in the fatty acid moiety, while 5 is a new natural product which was isolated from a natural origin for the first time.


Asunto(s)
Briozoos/química , Ceramidas/aislamiento & purificación , Cerebrósidos/aislamiento & purificación , Animales , Ceramidas/química , Cerebrósidos/química , Biología Marina , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Océanos y Mares , Estereoisomerismo
19.
Aging (Albany NY) ; 11(24): 12361-12374, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31881005

RESUMEN

Lyciumamide A (LyA), a dimer of phenolic amide isolated from the fruits of Lycium barbarum, has been confirmed to possess potent antioxidant activity. This study was aimed to investigate the neuroprotection and molecular mechanisms of LyA against cerebral ischemia/reperfusion (I/R) injury via improving antioxidant activity. The model of middle cerebral artery occlusion (MCAO) and SH-SY5Y cells induced by oxygen and glucose deprivation (OGD) were adopted to verify the neuroprotective effects and the potential pharmacology mechanisms of LyA in vivo and in vitro. In MCAO model, treatment with LyA significantly improved neurologic score, reduced infarct volume, and relieved oxidative stress injury at 48 h after reperfusion. Meanwhile, LyA markedly increased the transcription Nrf2 and HO-1 expressions in the ischemic cerebral cortex. In vitro results showed that LyA protected differentiated SH-SY5Y cells against OGD-induced injury. LyA significantly decreased the expression of caspase-3 and the Bax/Bcl-2 ratio. But knockdown of Nrf2 or HO-1 attenuated the protective effect of LyA. Similarly, knockdown of protein kinase Cε (PKCε) inhibited LyA-induced Nrf2/HO-1 activation, and abated its protective effects. In conclusion, this study firstly demonstrated that LyA protects against cerebral I/R injury, ameliorates oxidative damage and neuronal apoptosis, partly via activation of PKCε/Nrf2/HO-1 pathway.


Asunto(s)
Amidas/química , Amidas/farmacología , Lycium/química , Factor 2 Relacionado con NF-E2/metabolismo , Fenoles/química , Fenoles/farmacología , Proteína Quinasa C-epsilon/metabolismo , Daño por Reperfusión/prevención & control , Animales , Isquemia Encefálica/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Frutas , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Factor 2 Relacionado con NF-E2/genética , Neuroblastoma , Fármacos Neuroprotectores/farmacología , Proteína Quinasa C-epsilon/genética , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
20.
J Pharm Biomed Anal ; 47(4-5): 978-80, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18472379

RESUMEN

Total internal reflection (TIR) technique is an interface-specific tool and resonance light scattering (RLS) is of high sensitivity. The combination of both approaches is introduced into the solid/liquid interface for the first time. The behaviors of mixture of TPPS and BSA at the interface have been studied with total internal reflection resonance light scattering (TIR-RLS). The preliminary experimental results indicate that TIR-RLS is a good approach to study the interaction and distinguish the states of macromolecules at the solid/liquid interface.


Asunto(s)
Vidrio/química , Porfirinas/química , Albúmina Sérica Bovina/química , Agua/química , Animales , Tampones (Química) , Bovinos , Concentración de Iones de Hidrógeno , Luz , Modelos Químicos , Fosfatos/química , Ácidos Ftálicos/química , Refractometría , Dispersión de Radiación , Sensibilidad y Especificidad , Cloruro de Sodio/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA